Density and viscosity behavior of a North Sea crude oil, natural gas liquid, and their mixtures - DTU Orbit (13/10/2019)

Density and viscosity behavior of a North Sea crude oil, natural gas liquid, and their mixtures
The friction theory (f-theory) for viscosity modeling, combined with a recently developed characterization procedure, which includes an accurate method to describe the fluid mass distribution, commonly used cubic equations of state, and a Peneloux-type volume translation scheme, have been shown to accurately model the saturation pressures, densities, and viscosities of petroleum systems ranging from natural gases to heavy crude oils. The applicability of this overall modeling technique to reproduce measured bubble points, densities, and viscosities of a North Sea crude oil, a natural gas liquid, and their mixtures has been investigated. The approach has been successfully applied to the modeling of the experimental data of these fluid systems to within an acceptable accuracy.

General information
Publication status: Published
Organisations: Center for Phase Equilibria and Separation Processes, Department of Chemical and Biochemical Engineering, Center for Energy Resources Engineering, University of Bergen
Contributors: Schmidt, K., Cisneros, S., Kvamme, B.
Pages: 1303-1313
Publication date: 2005
Peer-reviewed: Yes

Publication information
Journal: Energy & Fuels
Volume: 19
Issue number: 4
ISSN (Print): 0887-0624
Ratings:
Web of Science (2005): Indexed yes
Original language: English
DOIs:
10.1021/ef049774h
Source: orbit
Source ID: 262100
Research output: Contribution to journal › Conference article – Annual report year: 2005 › Research › peer-review