Denitrifying granules in a marine Upflow Anoxic Sludge Bed (UASB) reactor

Carlos Octavio Letelier-Gordo*, Miguel Martin Herreros

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

16 Downloads (Pure)

Abstract

Marine land-based Recirculating Aquaculture Systems (RAS) are generally perceived as environmentally friendly aquatic production systems. To promote their sustainability even further and reduce the discharge of nutrients, there is a need for cost-effective end-of-pipe treatment technologies for removing nutrients. This includes nitrate-nitrogen (NO3−-N) for which well-proven technologies for freshwater systems exists, while similar technologies for saltwater systems are less advanced. Granular technology has been developed since the 1970s in wastewater treatment under the upflow anaerobic sludge bed (UASB) concept. This concept is based on the enrichment of different bacterial aggregations into a compact granule, optimizing synergistic and syntrophic bacterial processes by reducing the diffusion distance of substrates between the different bacterial consortia forming the granule. The following study examined the: 1) granular formation; and 2) nitrate removal capacity of a marine Upflow Anoxic Sludge Bed (UASB) reactor operating at different up-flow velocities (0.40–2.11 m/h). The results showed that marine denitrifying granules developed within 27 days using preconditioned rainbow trout (Oncorhynchus mykiss) organic matter waste, and that the highest specific denitrification rate (321.9 ± 13.1 mg NO3−-N/g Total Volatile Suspended Solids (TVSS)/d) was found at an upflow velocity of 0.97 m/h. The marine UASB denitrifying granule reactor had a total capacity of removing 14.9 kg NO3−-N/m3 reactor volume per day at a hydraulic retention time of 1.9 h, making it a strong candidate for end-of-pipe denitrification of marine RAS effluent as well as for in-line treatment in marine systems
Original languageEnglish
JournalAquacultural Engineering
Volume84
Pages (from-to)42-49
ISSN0144-8609
DOIs
Publication statusPublished - 2019

Keywords

  • Denitrification
  • Granular sludge
  • Upflow Anoxic Sludge Bed

Cite this

@article{091dccb35e9248029a5c1753274ab3a3,
title = "Denitrifying granules in a marine Upflow Anoxic Sludge Bed (UASB) reactor",
abstract = "Marine land-based Recirculating Aquaculture Systems (RAS) are generally perceived as environmentally friendly aquatic production systems. To promote their sustainability even further and reduce the discharge of nutrients, there is a need for cost-effective end-of-pipe treatment technologies for removing nutrients. This includes nitrate-nitrogen (NO3−-N) for which well-proven technologies for freshwater systems exists, while similar technologies for saltwater systems are less advanced. Granular technology has been developed since the 1970s in wastewater treatment under the upflow anaerobic sludge bed (UASB) concept. This concept is based on the enrichment of different bacterial aggregations into a compact granule, optimizing synergistic and syntrophic bacterial processes by reducing the diffusion distance of substrates between the different bacterial consortia forming the granule. The following study examined the: 1) granular formation; and 2) nitrate removal capacity of a marine Upflow Anoxic Sludge Bed (UASB) reactor operating at different up-flow velocities (0.40–2.11 m/h). The results showed that marine denitrifying granules developed within 27 days using preconditioned rainbow trout (Oncorhynchus mykiss) organic matter waste, and that the highest specific denitrification rate (321.9 ± 13.1 mg NO3−-N/g Total Volatile Suspended Solids (TVSS)/d) was found at an upflow velocity of 0.97 m/h. The marine UASB denitrifying granule reactor had a total capacity of removing 14.9 kg NO3−-N/m3 reactor volume per day at a hydraulic retention time of 1.9 h, making it a strong candidate for end-of-pipe denitrification of marine RAS effluent as well as for in-line treatment in marine systems",
keywords = "Denitrification, Granular sludge, Upflow Anoxic Sludge Bed",
author = "Letelier-Gordo, {Carlos Octavio} and Herreros, {Miguel Martin}",
year = "2019",
doi = "10.1016/j.aquaeng.2018.12.002",
language = "English",
volume = "84",
pages = "42--49",
journal = "Aquacultural Engineering",
issn = "0144-8609",
publisher = "Elsevier",

}

Denitrifying granules in a marine Upflow Anoxic Sludge Bed (UASB) reactor. / Letelier-Gordo, Carlos Octavio; Herreros, Miguel Martin.

In: Aquacultural Engineering, Vol. 84, 2019, p. 42-49.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Denitrifying granules in a marine Upflow Anoxic Sludge Bed (UASB) reactor

AU - Letelier-Gordo, Carlos Octavio

AU - Herreros, Miguel Martin

PY - 2019

Y1 - 2019

N2 - Marine land-based Recirculating Aquaculture Systems (RAS) are generally perceived as environmentally friendly aquatic production systems. To promote their sustainability even further and reduce the discharge of nutrients, there is a need for cost-effective end-of-pipe treatment technologies for removing nutrients. This includes nitrate-nitrogen (NO3−-N) for which well-proven technologies for freshwater systems exists, while similar technologies for saltwater systems are less advanced. Granular technology has been developed since the 1970s in wastewater treatment under the upflow anaerobic sludge bed (UASB) concept. This concept is based on the enrichment of different bacterial aggregations into a compact granule, optimizing synergistic and syntrophic bacterial processes by reducing the diffusion distance of substrates between the different bacterial consortia forming the granule. The following study examined the: 1) granular formation; and 2) nitrate removal capacity of a marine Upflow Anoxic Sludge Bed (UASB) reactor operating at different up-flow velocities (0.40–2.11 m/h). The results showed that marine denitrifying granules developed within 27 days using preconditioned rainbow trout (Oncorhynchus mykiss) organic matter waste, and that the highest specific denitrification rate (321.9 ± 13.1 mg NO3−-N/g Total Volatile Suspended Solids (TVSS)/d) was found at an upflow velocity of 0.97 m/h. The marine UASB denitrifying granule reactor had a total capacity of removing 14.9 kg NO3−-N/m3 reactor volume per day at a hydraulic retention time of 1.9 h, making it a strong candidate for end-of-pipe denitrification of marine RAS effluent as well as for in-line treatment in marine systems

AB - Marine land-based Recirculating Aquaculture Systems (RAS) are generally perceived as environmentally friendly aquatic production systems. To promote their sustainability even further and reduce the discharge of nutrients, there is a need for cost-effective end-of-pipe treatment technologies for removing nutrients. This includes nitrate-nitrogen (NO3−-N) for which well-proven technologies for freshwater systems exists, while similar technologies for saltwater systems are less advanced. Granular technology has been developed since the 1970s in wastewater treatment under the upflow anaerobic sludge bed (UASB) concept. This concept is based on the enrichment of different bacterial aggregations into a compact granule, optimizing synergistic and syntrophic bacterial processes by reducing the diffusion distance of substrates between the different bacterial consortia forming the granule. The following study examined the: 1) granular formation; and 2) nitrate removal capacity of a marine Upflow Anoxic Sludge Bed (UASB) reactor operating at different up-flow velocities (0.40–2.11 m/h). The results showed that marine denitrifying granules developed within 27 days using preconditioned rainbow trout (Oncorhynchus mykiss) organic matter waste, and that the highest specific denitrification rate (321.9 ± 13.1 mg NO3−-N/g Total Volatile Suspended Solids (TVSS)/d) was found at an upflow velocity of 0.97 m/h. The marine UASB denitrifying granule reactor had a total capacity of removing 14.9 kg NO3−-N/m3 reactor volume per day at a hydraulic retention time of 1.9 h, making it a strong candidate for end-of-pipe denitrification of marine RAS effluent as well as for in-line treatment in marine systems

KW - Denitrification

KW - Granular sludge

KW - Upflow Anoxic Sludge Bed

U2 - 10.1016/j.aquaeng.2018.12.002

DO - 10.1016/j.aquaeng.2018.12.002

M3 - Journal article

VL - 84

SP - 42

EP - 49

JO - Aquacultural Engineering

JF - Aquacultural Engineering

SN - 0144-8609

ER -