Denatured state is critical in determining the properties of model proteins designed on different folds

Andrea Amatori, Jesper Ferkinghoff-Borg, Guido Tiana, Richardo A. Broglia

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    The thermodynamics of proteins designed on three common folds (SH3, chymotrypsin inhibitor 2 [CI2], and protein G) is studied with a simplified C alpha, model and compared with the thermodynamics of proteins designed on random-generated folds. The model allows to design sequences to fold within a dRMSD ranging from 1.2 to 4.2 angstrom from the crystallographic native conformation and to study properties that are hard to be measured experimentally. It is found that the denatured state of all of them is not random but is, to different extents, partially structured. The degree of structure is more abundant for SH3 and protein G, giving rise to a weaker stability but a more efficient folding kinetics than CI2 and, even more, than the random-generated folds. Consequently, the features of the unfolded state seem to be as important in the determination of the thermodynamic properties of these proteins as the features of the native state.
    Original languageEnglish
    JournalProteins - Structure Function and Bioinformatics
    Volume70
    Issue number3
    Pages (from-to)1047-1055
    ISSN0887-3585
    DOIs
    Publication statusPublished - 2008

    Fingerprint

    Dive into the research topics of 'Denatured state is critical in determining the properties of model proteins designed on different folds'. Together they form a unique fingerprint.

    Cite this