Delay estimation on a railway-line with smart use of micro-simulation - DTU Orbit
(27/10/2019)

Delay estimation on a railway-line with smart use of micro-simulation
This paper formulates a delay propagation model that estimates total railway line delay as a polynomial function of a single primary delay. The estimate is derived from a finite series of delays over a horizon that spans two dimensions: the length of the railway line and the number of trains in the service plan. The paper shows that the total delay estimate is a cubic relation for small primary delays.

A probabilistic approach is presented to combine the total delay functions of primary delays given to different trains. The final estimate is the total delay on railway lines, after a random incident has occurred. The model can be integrated in railway timetable analysis to reduce the number of necessary simulations, and can be used when the computation speed is an issue, such as on-line rescheduling algorithms. The model is demonstrated with an analysis of a Danish suburban railway.

General information
Publication status: Published
Organisations: Department of Management Engineering, Transport DTU, Transport Modelling, Management Science, Operations Management
Contributors: Cerreto, F., Harrod, S., Nielsen, O. A.
Pages: 867-874
Publication date: 2017

Host publication information
Title of host publication: Transport Infrastructure and Systems. Proceedings of the AIIT International Congress on Transport Infrastructure and Systems (Tis 2017), Rome, Italy, 10-12 April 2017
Publisher: CRC Press
Editors: Dell'Acqua, G., Wegman, F.
ISBN (Print): 978-1-138-03009-1
DOI: 10.1201/9781315281896-112
Source: PublicationPreSubmission
Source ID: 131444642
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2017 › Research › peer-review