Degradation of specific aromatic compounds migrating from PEX pipes into drinking water

Nine specific compounds identified to migrate from polyethylene (PE) and cross-linked polyethylene (PEX) to drinking water were investigated for their degradation in drinking water. Three sample types were studied: field samples (collected at consumer taps), PEX pipe water extractions, and water samples spiked with target compounds. Four compounds were quantified in field samples at concentrations of 0.15e8.0 mg/L. During PEX pipe water extraction 0.42 ± 0.20 mg NVOC/L was released and five compounds quantified (0.5e6.1 mg/L). The degradation of these compounds was evaluated in PEX-pipe water extractions and spiked samples. 4-ethylphenol was degraded within 22 days. Eight compounds were, however, only partially degradable under abiotic and biotic conditions within the timeframe of the experiments (2e4 weeks). Neither inhibition nor co-metabolism was observed in the presence of acetate or PEX pipe derived NVOC. Furthermore, the degradation in drinking water from four different locations with three different water works was similar. In conclusion, eight out of the nine compounds studied would e if being released from the pipes - reach consumers with only minor concentration decrease during water distribution.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Environmental Chemistry, Urban Water Engineering, Technical University of Denmark
Pages: 269-278
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Water Research
Volume: 81
ISSN (Print): 0043-1354
Ratings:
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.63 SJR 2.665 SNIP 2.476
Web of Science (2015): Impact factor 5.991
Web of Science (2015): Indexed yes
Original language: English
Keywords: Polyethylene pipe, Additives, Migration, Degradation, Drinking water, SPME-GC-MS
Electronic versions:
Ryssel_et_al_Degradation_of_specific_aromatic_compounds_migrating_from_PEX_pipes_into_drinking_water.pdf
Embargo ended: 31/08/2016
DOIs:
10.1016/j.watres.2015.05.054
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review