Abstract
To fully realize the potential of solid oxide electrolysis (SOE) systems, improvements in long-term durability and scalability are required. Investigating and comparing different degradation mechanisms under different conditions is crucial. A multi-scale cell to system level time-dependent simulation framework for SOE systems including various degradation phenomena is presented. Galvanostatic, Potentiostatic, and Potentio-Galvanostatic operation, a combination of the two previous modes, are investigated. The time and space evolution of various performance and degradation parameters are compared. Potentio-Galvanostatic operation consistently maintains stable efficiency throughout its lifetime. Near thermoneutral condition is maintained in Potentiostatic and Potentio-Galvanostatic operations, while degradation eventually leads to exothermic operation in Galvanostatic mode. Cathode overpotential is higher in Galvanostatic operation, while in Potentio-Galvanostatic operation, it drops over time as the temperature increases. After 25,000 h of operation under specified conditions, the area-specific resistance (ASR) experiences a 51% and 62% increase in Galvanostatic and Potentiostatic operations, respectively, while Potentio-Galvanostatic operation results in only a 4% increase compared to the beginning of life. Interconnect oxidation is most pronounced in Potentio-Galvanostatic mode, highlighting the need for high-quality steels and coatings in this operation strategy. Over time, in Galvanostatic operation, the current density shifts from being highest at the inlet towards the outlet.
Original language | English |
---|---|
Article number | 100653 |
Journal | Energy Conversion and Management: X |
Volume | 23 |
Number of pages | 21 |
ISSN | 2590-1745 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- Solid oxide electrolysis system
- Performance degradation
- Operation modes
- Modelling
- Durability