Deep Learning based Model-free Robust Load Restoration to Enhance Bulk System Resilience with Wind Power Penetration

Jin Zhao, Fangxing Fran Li, Xi Chen, Qiuwei Wu

    Research output: Contribution to journalJournal articleResearchpeer-review

    107 Downloads (Pure)

    Abstract

    This paper proposes a new deep learning (DL) based model-free robust method for bulk system on-line load restoration with high penetration of wind power. Inspired by the iterative calculation of the two-stage robust load restoration model, the deep neural network (DNN) and deep convolutional neural network (CNN) are respectively designed to find the worst-case system condition of a load pickup decision and evaluate the corresponding security. In order to find the optimal result within a limited number of checks, a load pickup checklist generation (LPCG) algorithm is developed to ensure the optimality. Then, the fast robust load restoration strategy acquisition is achieved based on the de-signed one-line strategy generation (OSG) algorithm. The pro-posed method finds the optimal result in a model-free way, holds the robustness to handle uncertainties, and provides real-time computation. It can completely replace conventional robust optimization and supports on-line robust load restoration which better satisfies the changeable restoration process. The effectiveness of the proposed method is validated using the IEEE 30-bus system and the IEEE 118-bus system, showing high computational efficiency and considerable accuracy.
    Original languageEnglish
    JournalIEEE Transactions on Power Systems
    Volume37
    Issue number3
    Pages (from-to)1969-1978
    ISSN0885-8950
    DOIs
    Publication statusPublished - 2022

    Keywords

    • Convolutional neural network (CNN)
    • Convolutional neural networks
    • Deep learning (DL)
    • Load modeling
    • Load restoration
    • Mathematical models
    • Optimization
    • Power system resilience
    • Uncertainty
    • Voltage
    • Wind power generation
    • Wind power integration

    Fingerprint

    Dive into the research topics of 'Deep Learning based Model-free Robust Load Restoration to Enhance Bulk System Resilience with Wind Power Penetration'. Together they form a unique fingerprint.

    Cite this