Deep Generative Models for Molecular Science - DTU Orbit (26/08/2019)

Deep Generative Models for Molecular Science

Generative deep machine learning models now rival traditional quantum-mechanical computations in predicting properties of new structures, and they come with a significantly lower computational cost, opening new avenues in computational molecular science. In the last few years, a variety of deep generative models have been proposed for modeling molecules, which differ in both their model structure and choice of input features. We review these recent advances within deep generative models for predicting molecular properties, with particular focus on models based on the probabilistic autoencoder (or variational autoencoder, VAE) approach in which the molecular structure is embedded in a latent vector space from which its properties can be predicted and its structure can be restored.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems
Corresponding author: Winther, O.
Contributors: Jørgensen, P. B., Schmidt, M. N., Winther, O.
Number of pages: 9
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Molecular Informatics
Volume: 37
Issue number: 1-2
Article number: 1700133
ISSN (Print): 1868-1743
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 2.18 SJR 0.649 SNIP 0.664
Web of Science (2018): Impact factor 2.375
Web of Science (2018): Indexed yes
Original language: English
Keywords: Molecular science, Deep Learning, Variational inference, Variational auto-encoders, Generative modeling
Electronic versions:
Jrgensen_et_al_2018_Molecular_Informatics.pdf
DOI:
10.1002/minf.201700133
Source: FindIt
Source-ID: 2396053970
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review