Decreased sleep spindle density in patients with idiopathic REM sleep behavior disorder and patients with Parkinson’s disease

Julie Anja Engelhard Christensen, Jacob Kempfner, Marielle Zoetmulder, Helle L. Leonthin, Lars Johan Arvastson, Søren Ro Christensen, Helge Bjarup Dissing Sørensen, Poul Jennum

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

ObjectiveTo determine whether sleep spindles (SS) are potentially a biomarker for Parkinson’s disease (PD). MethodsFifteen PD patients with REM sleep behavior disorder (PD+RBD), 15 PD patients without RBD (PD−RBD), 15 idiopathic RBD (iRBD) patients and 15 age-matched controls underwent polysomnography (PSG). SS were scored in an extract of data from control subjects. An automatic SS detector using a Matching Pursuit (MP) algorithm and a Support Vector Machine (SVM) was developed and applied to the PSG recordings. The SS densities in N1, N2, N3, all NREM combined and REM sleep were obtained and evaluated across the groups. ResultsThe SS detector achieved a sensitivity of 84.7% and a specificity of 84.5%. At a significance level of α=1%, the iRBD and PD+RBD patients had a significantly lower SS density than the control group in N2, N3 and all NREM stages combined. At a significance level of α=5%, PD−RBD had a significantly lower SS density in N2 and all NREM stages combined. ConclusionsThe lower SS density suggests involvement in pre-thalamic fibers involved in SS generation. SS density is a potential early PD biomarker. SignificanceIt is likely that an automatic SS detector could be a supportive diagnostic tool in the evaluation of iRBD and PD patients.
Original languageEnglish
JournalClinical Neurophysiology
Volume125
Issue number3
Pages (from-to)512-519
ISSN1388-2457
DOIs
Publication statusPublished - 2014

Keywords

  • Sleep spindles
  • Parkinson’s disease
  • REM sleep behavior disorder
  • Automatic detection
  • Matching Pursuit
  • Support Vector Machine

Fingerprint Dive into the research topics of 'Decreased sleep spindle density in patients with idiopathic REM sleep behavior disorder and patients with Parkinson’s disease'. Together they form a unique fingerprint.

Cite this