Decoupled Power Solution for Dual-input Isolated DC-DC Converters Using Four Quadrants Integrated Transformers (FQIT)

Ziwei Ouyang, Michael A. E. Andersen, Ole Cornelius Thomsen

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    Abstract

    A common limitation of power coupling effect in some known multiple-input dc-dc converters has been addressed in many literatures. In order to overcome this limitation, a new concept for decoupling the primary windings in the integrated multiple-winding transformers based on 3-dimensional (3D) space orthogonal flux is proposed in this paper. And thus a new geometry core and relative winding arrangements are proposed in accordance with the rthogonal flux decoupling technology. Due to the four secondary windings are arranged in a quadratic pattern at the base core plate with the two perpendicular
    primary windings, a name of “four quadrants integrated transformers” (FQIT) is therefore given to the proposed construction. Since the two primary windings are uncoupled, the FQIT allows the two input power stages to transfer the energy into the output load simultaneously or at any timemultiplexing
    scheme, which can optimize the utilization of diversified power energy sources, simplify the system structure, improve the flexibility and reduce the overall cost, so they are attractive for the hybrid renewable power system. Section IV initiates a discussion for the advantages of the FQIT. In order to verify the feasibility of the FQIT in multiple-input converter, a dual-input isolated boost dc-dc converter employing with the FQIT is designed and tested. The results have excellently demonstrated that the two input power stages can be operated independently and the correctness of all the analysis in the paper.
    Original languageEnglish
    Title of host publication2012 IEEE 7th International Power Electronics and Motion Control Conference
    PublisherIEEE
    Publication date2012
    Pages698-704
    ISBN (Print)978-1-4577-2087-1
    DOIs
    Publication statusPublished - 2012
    EventThe International Power Electronics and Motion Control Conference - Harbin, China
    Duration: 2 Jun 20125 Jun 2012

    Conference

    ConferenceThe International Power Electronics and Motion Control Conference
    Country/TerritoryChina
    CityHarbin
    Period02/06/201205/06/2012

    Keywords

    • DC-DC
    • Decoupling
    • Integrated transformer
    • Multiple-input converter (MIC)
    • Phase shift
    • Renewable energy

    Fingerprint

    Dive into the research topics of 'Decoupled Power Solution for Dual-input Isolated DC-DC Converters Using Four Quadrants Integrated Transformers (FQIT)'. Together they form a unique fingerprint.

    Cite this