Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions

Yohan Kim, John Sidney, Søren Buus, Alessandro Sette, Morten Nielsen, Bjoern Peters

    Research output: Contribution to journalJournal articleResearchpeer-review

    559 Downloads (Pure)

    Abstract

    Background: It is important to accurately determine the performance of peptide: MHC binding predictions, as this enables users to compare and choose between different prediction methods and provides estimates of the expected error rate. Two common approaches to determine prediction performance are cross-validation, in which all available data are iteratively split into training and testing data, and the use of blind sets generated separately from the data used to construct the predictive method. In the present study, we have compared cross-validated prediction performances generated on our last benchmark dataset from 2009 with prediction performances generated on data subsequently added to the Immune Epitope Database (IEDB) which served as a blind set. Results: We found that cross-validated performances systematically overestimated performance on the blind set. This was found not to be due to the presence of similar peptides in the cross-validation dataset. Rather, we found that small size and low sequence/affinity diversity of either training or blind datasets were associated with large differences in cross-validated vs. blind prediction performances. We use these findings to derive quantitative rules of how large and diverse datasets need to be to provide generalizable performance estimates. Conclusion: It has long been known that cross-validated prediction performance estimates often overestimate performance on independently generated blind set data. We here identify and quantify the specific factors contributing to this effect for MHC-I binding predictions. An increasing number of peptides for which MHC binding affinities are measured experimentally have been selected based on binding predictions and thus are less diverse than historic datasets sampling the entire sequence and affinity space, making them more difficult benchmark data sets. This has to be taken into account when comparing performance metrics between different benchmarks, and when deriving error estimates for predictions based on benchmark performance.
    Original languageEnglish
    Article number241
    JournalB M C Bioinformatics
    Volume15
    Issue number1
    Number of pages9
    ISSN1471-2105
    DOIs
    Publication statusPublished - 2014

    Bibliographical note

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

    Keywords

    • binding prediction
    • Immune Epitope Database
    • allergy Hypersensitivity (MeSH) immune system disease
    • Primates Mammalia Vertebrata Chordata Animalia (Animals, Chordates, Humans, Mammals, Primates, Vertebrates) - Hominidae [86215] human common
    • major histocompatibility complex MHC
    • 10060, Biochemistry studies - General
    • 10064, Biochemistry studies - Proteins, peptides and amino acids
    • 34502, Immunology - General and methods
    • 34508, Immunology - Immunopathology, tissue immunology
    • 35500, Allergy
    • cross-validated analysis mathematical and computer techniques
    • sequence analysis laboratory techniques, genetic techniques
    • Biochemistry and Molecular Biophysics
    • Methods and Techniques
    • BIOCHEMICAL
    • BIOTECHNOLOGY
    • MATHEMATICAL
    • T-CELL EPITOPES
    • DATABASE
    • IMMUNOGENICITY
    • IMMUNOLOGY
    • NETMHCPAN
    • MOLECULES
    • SEQUENCE
    • RESOURCE
    • AFFINITY
    • Benchmarking of MHC class I predictors
    • Epitope prediction
    • Sequence similarity
    • Cross-validation

    Fingerprint

    Dive into the research topics of 'Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions'. Together they form a unique fingerprint.

    Cite this