Data-driven Wake Modelling for Reduced Uncertainties in short-term Possible Power Estimation: Paper

Tuhfe Göçmen*, Gregor Giebel

*Corresponding author for this work

    Research output: Contribution to journalConference articleResearchpeer-review

    506 Downloads (Pure)


    One of the ancillary services the wind farms are required to provide to the system operators is reserve power, which is achieved by down-regulating the wind farm from its possible power. In order to estimate the reserves, the possible power needs to be calculated by correcting the reduced wake effects behind the down-regulated turbines. The most recent grid codes dictate the quality of the possible power at the wind farm level to be assessed within 1-min intervals for offshore wind power plants. Therefore, the necessity of a fast and reliable wake model is more prominent than ever. Here we investigate the performance of two engineering wake models with 1-sec resolution SCADA data on three different offshore wind farms, given the quantified input uncertainty. The preliminary results show that, even wind farm specific training of the model parameters might fail to comply with the strict criteria stated in the grid codes, especially for the layouts with significant wake losses. In order to tackle the inadequacy of the engineering wake models to capture some of the dynamics in the wind farm flow due to the embedded assumptions, purely data-driven techniques are evaluated. The flexibility of such an on-line model enables ‘site-turbine-time-specific’ modelling, in which the parameters are defined per turbine and updated with each time-step in a specific wind farm.
    Original languageEnglish
    Article number072002
    Book seriesJournal of Physics: Conference Series
    Issue number7
    Number of pages10
    Publication statusPublished - 2018
    EventThe Science of Making Torque from Wind 2018 - Politecnico di Milano (POLIMI), Milan, Italy
    Duration: 20 Jun 201822 Jun 2018
    Conference number: 7


    ConferenceThe Science of Making Torque from Wind 2018
    LocationPolitecnico di Milano (POLIMI)
    Internet address

    Bibliographical note

    Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd.


    Dive into the research topics of 'Data-driven Wake Modelling for Reduced Uncertainties in short-term Possible Power Estimation: Paper'. Together they form a unique fingerprint.

    Cite this