Data Descriptor: A multiscale imaging and modelling dataset of the human inner ear - DTU Orbit (13/11/2019)

Understanding the human inner ear anatomy and its internal structures is paramount to advance hearing implant technology. While the emergence of imaging devices allowed researchers to improve understanding of intracochlear structures, the difficulties to collect appropriate data has resulted in studies conducted with few samples. To assist the cochlear research community, a large collection of human temporal bone images is being made available. This data descriptor, therefore, describes a rich set of image volumes acquired using cone beam computed tomography and micro-CT modalities, accompanied by manual delineations of the cochlea and sub-compartments, a statistical shape model encoding its anatomical variability, and data for electrode insertion and electrical simulations. This data makes an important asset for future studies in need of high-resolution data and related statistical data objects of the cochlea used to leverage scientific hypotheses. It is of relevance to anatomists, audiologists, computer scientists in the different domains of image analysis, computer simulations, imaging formation, and for biomedical engineers designing new strategies for cochlear implantations, electrode design, and others.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, Scientific Computing, University of Bern, Alma Medical Imaging, SCANCO Medical AG, MED-EL GmbH, Pompeu Fabra University, University Hospital of Bern, Catalan Institution for Research and Advanced Studies, Technical University of Munich
Number of pages: 12
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Scientific Data
Volume: 4
Article number: 170132
ISSN (Print): 2052-4463
Ratings:
Scopus rating (2017): CiteScore 6.08 SJR 3.026 SNIP 2.389
Web of Science (2017): Impact factor 5.305
Original language: English
Electronic versions:
sdata2017132.pdf
DOIs:
10.1038/sdata.2017.132
Source: FindIt
Source ID: 2390770382
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review