TY - JOUR
T1 - Damping properties of non-conductive composite materials for applications in power transmission pylons
AU - Kliem, Mathias
AU - Rüppel, Marvin
AU - Høgsberg, Jan
AU - Berggreen, Christian
AU - Baier, Sina
PY - 2018
Y1 - 2018
N2 - This study aims to characterize the fibre direction dependent damping properties of non-conductive composite materialsto be used in newly designed electrical power transm°ission pylons, on which the conducting cables will be directlyconnected. Thus, the composite structure can be designed both to insulate and to act as a damper to avoid for exampleconductor line galloping. In order to predict the damping of the composite materials, a comprehensive analysis on arepresentative unidirectional laminate was carried out. The fibre direction dependent damping analysis of glass andaramid reinforced epoxy and vinylester, partly reinforced with nanoclay or fibre-hybridized, was investigated using aDynamic Mechanical Thermal Analysis and a Vibrating Beam Testing procedure for five different fibre orientations (0°, 30°, 45° , 60° and 90°). The focus was on damping behaviour evaluation at low temperatures (-20 C and 0 C) and lowvibration frequencies (0.5 Hz, 1 Hz and 2 Hz), in order to represent the environmental conditions of vibrating conductorlines during. The prediction of the damping behaviour for coupon-level-specimens with three balanced laminates wassuccessfully carried out with a maximal deviation of maximal 12.1 %.
AB - This study aims to characterize the fibre direction dependent damping properties of non-conductive composite materialsto be used in newly designed electrical power transm°ission pylons, on which the conducting cables will be directlyconnected. Thus, the composite structure can be designed both to insulate and to act as a damper to avoid for exampleconductor line galloping. In order to predict the damping of the composite materials, a comprehensive analysis on arepresentative unidirectional laminate was carried out. The fibre direction dependent damping analysis of glass andaramid reinforced epoxy and vinylester, partly reinforced with nanoclay or fibre-hybridized, was investigated using aDynamic Mechanical Thermal Analysis and a Vibrating Beam Testing procedure for five different fibre orientations (0°, 30°, 45° , 60° and 90°). The focus was on damping behaviour evaluation at low temperatures (-20 C and 0 C) and lowvibration frequencies (0.5 Hz, 1 Hz and 2 Hz), in order to represent the environmental conditions of vibrating conductorlines during. The prediction of the damping behaviour for coupon-level-specimens with three balanced laminates wassuccessfully carried out with a maximal deviation of maximal 12.1 %.
KW - Composite materials
KW - Damping
KW - Nanoclay
KW - Modal strain energy approach
U2 - 10.1177/0021998318766635
DO - 10.1177/0021998318766635
M3 - Journal article
SN - 0021-9983
VL - 52
SP - 3601
EP - 3619
JO - Journal of Composite Materials
JF - Journal of Composite Materials
IS - 26
ER -