Damage detection methods on wind turbine blade testing with wired and wireless accelerometer sensors

Mark Mollineaux, Konstantinos Balafas, Kim Branner, Per Hørlyk Nielsen, Angelo Tesauro, Anne Kiremidjian, Rajagopal Ramesh

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

Abstract

Testing   was   performed   on   a   34   meter   blade   at   a   facility   in   DTU   Risø   Campus,
featuring   both   wired   accelerometers   and   low­power   MEMs­based   wireless
accelerometers. Testing was focused on an induced delamination area on the trailing
edge of the blade, which was subject to various configurations in order to simulate
different   degrees   of   damage.   Excitation   was   performed   in   two   ways:   near   the
delamination zone in a simulation of operational wind excitations, and with a bar
designed to excite torsional modes of the wind turbine blade. 
We compare the data collected from the wireless sensors against wired sensors to
demonstrate their performance. We explore methods for determining damage. We first
explore results of autoregressive coefficients for indicating damage levels. Finally, we
demonstrate the use of damage sensitive features from the wavelet transforms of input
and output signals to provide a method suitable for non­stationary blade excitations. 
Original languageEnglish
Title of host publicationProceedings of the 7th European Workshop on Structural Health Monitoring
Number of pages8
Publication date2014
Pages1863-1870
Publication statusPublished - 2014
EventEuropean Workshop on Structural Health Monitoring - Nantes, France
Duration: 8 Jul 201411 Jul 2014
http://www.ewshm2014.com/

Workshop

WorkshopEuropean Workshop on Structural Health Monitoring
CountryFrance
CityNantes
Period08/07/201411/07/2014
Internet address

Keywords

  • Structural Health Monitoring
  • Damage Detection
  • Wind Turbine
  • Wireless sensing
  • Wavelets

Fingerprint Dive into the research topics of 'Damage detection methods on wind turbine blade testing with wired and wireless accelerometer sensors'. Together they form a unique fingerprint.

Cite this