Cyclic olefin polymers: emerging materials for lab-on-a-chip applications

Pedro Nunes, Pelle Ohlsson, Olga Ordeig Sala, Jörg Peter Kutter

    Research output: Contribution to journalJournal articleResearchpeer-review


    Cyclic olefin polymers (COPs) are increasingly popular as substrate material for microfluidics. This is due to their promising properties, such as high chemical resistance, low water absorption, good optical transparency in the near UV range and ease of fabrication. COPs are commercially available from a range of manufacturers under various brand names (Apel, Arton, Topas, Zeonex and Zeonor). Some of these (Apel and Topas) are made from more than one kind of monomer and therefore also known as cyclic olefin copolymers (COCs). In order to structure these materials, a wide array of fabrication methods is available. Laser ablation and micromilling are direct structuring methods suitable for fast prototyping, whilst injection moulding, hot embossing and nanoimprint lithography are replication methods more appropriate for low-cost production. Using these fabrication methods, a multitude of chemical analysis techniques have already been implemented. These include microchip electrophoresis (MCE), chromatography, solid phase extraction (SPE), isoelectric focusing (IEF) and mass spectrometry (MS). Still much additional work is needed to characterise and utilise the full potential of COP materials. This is especially true within optofluidics, where COPs are still rarely used, despite their excellent optical properties. This review presents a detailed description of the properties of COPs, the available fabrication methods and several selected applications described in the literature.
    Original languageEnglish
    JournalMicrofluidics and Nanofluidics
    Issue number2-3
    Pages (from-to)145-161
    Publication statusPublished - 2010


    • Microfluidics
    • Cyclo olefin copolymers
    • Lab-on-a-chip
    • Cyclic olefin polymers

    Fingerprint Dive into the research topics of 'Cyclic olefin polymers: emerging materials for lab-on-a-chip applications'. Together they form a unique fingerprint.

    Cite this