Cup Anemometer Overspeeding

Statistical considerations are applied to a general equation of motion for cup anemometers in a turbulent wind. It is shown that the relative overspeeding $\Delta S/S$ can be expressed as $\Delta S/S = I_h z^2 \cdot J_s(l_0/\Lambda_s) + c I_w z^2$, where I_s and I_w are the horizontal and the vertical turbulence intensifies, respectively. The function J_s depends on the shape of the spectrum of horizontal turbulent energy, l_0 is the distance constant for the anemometer, and Λ_s is a characteristic length scale of the horizontal turbulence. The constant c is of order unity.

If Λ_s is suitably chosen as the scale of the energy-containing eddies, then J_s is satisfactorily approximated by $J_s = (1 + \Lambda_s/l_0)^{-1}$ in most atmospheric applications.