Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass

Carles Pellicer i Nàcher, Carlos Domingo Felez, Ayten Gizem Mutlu, Barth F. Smets

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Extracellular polymeric substances (EPS) have a presumed determinant role in the structure, architecture, strength, filterability, and settling behaviour of microbial solids in biological wastewater treatment processes. Consequently, numerous EPS extraction protocols have recently been published that aim to optimize the trade off between high EPS recovery and low cell lysis. Despite extensive efforts, the obtained results are often contradictory, even when analysing similar biomass samples and using similar experimental conditions, which greatly complicates the selection of an extraction protocol. This study presents a rigorous and critical assessment of existing physical and chemical EPS extraction methods applied to mixed-culture biomass samples (nitrifying, nitritation-anammox, and activated sludge biomass). A novel fluorescence-based method was developed and calibrated to quantify the lysis potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in severe underestimation of protein and carbohydrate concentrations by using standard analytical methods. Keeping both maximum EPS extraction yields and minimal biomass lysis as criteria, it was identified a sonication-based extraction method as the best to determine and compare tightly-bound EPS fractions in different biomass samples. Protein was consistently the main EPS component in all analysed samples. However, EPS from nitrifying enrichments was richer in DNA, the activated sludge EPS had a higher content in humic acids and carbohydrates, and the nitritation-anammox EPS, while similar in composition to the nitrifier EPS, had a lower fraction of hydrophobic biopolymers. In general, the easily-extractable EPS fraction was more abundant in carbohydrates and humic substances, while DNA could only be found in tightly bound EPS fractions. In conclusion, the methodology presented herein supports the rational selection of analytical tools and EPS extraction protocols in further EPS characterization studies.
Original languageEnglish
JournalWater Research
Volume47
Issue number15
Pages (from-to)5564-5574
ISSN0043-1354
DOIs
Publication statusPublished - 2013

Keywords

  • Nitric oxide
  • Nitrous oxide
  • Anammox
  • Modeling
  • Biofilm
  • Periodic aeration

Cite this

@article{b2d605e412d6455f9a5d16da3775e2db,
title = "Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass",
abstract = "Extracellular polymeric substances (EPS) have a presumed determinant role in the structure, architecture, strength, filterability, and settling behaviour of microbial solids in biological wastewater treatment processes. Consequently, numerous EPS extraction protocols have recently been published that aim to optimize the trade off between high EPS recovery and low cell lysis. Despite extensive efforts, the obtained results are often contradictory, even when analysing similar biomass samples and using similar experimental conditions, which greatly complicates the selection of an extraction protocol. This study presents a rigorous and critical assessment of existing physical and chemical EPS extraction methods applied to mixed-culture biomass samples (nitrifying, nitritation-anammox, and activated sludge biomass). A novel fluorescence-based method was developed and calibrated to quantify the lysis potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in severe underestimation of protein and carbohydrate concentrations by using standard analytical methods. Keeping both maximum EPS extraction yields and minimal biomass lysis as criteria, it was identified a sonication-based extraction method as the best to determine and compare tightly-bound EPS fractions in different biomass samples. Protein was consistently the main EPS component in all analysed samples. However, EPS from nitrifying enrichments was richer in DNA, the activated sludge EPS had a higher content in humic acids and carbohydrates, and the nitritation-anammox EPS, while similar in composition to the nitrifier EPS, had a lower fraction of hydrophobic biopolymers. In general, the easily-extractable EPS fraction was more abundant in carbohydrates and humic substances, while DNA could only be found in tightly bound EPS fractions. In conclusion, the methodology presented herein supports the rational selection of analytical tools and EPS extraction protocols in further EPS characterization studies.",
keywords = "Nitric oxide, Nitrous oxide, Anammox, Modeling, Biofilm, Periodic aeration",
author = "{Pellicer i N{\`a}cher}, Carles and {Domingo Felez}, Carlos and Mutlu, {Ayten Gizem} and Smets, {Barth F.}",
year = "2013",
doi = "10.1016/j.watres.2013.06.026",
language = "English",
volume = "47",
pages = "5564--5574",
journal = "Water Research",
issn = "0043-1354",
publisher = "I W A Publishing",
number = "15",

}

Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass. / Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Mutlu, Ayten Gizem; Smets, Barth F.

In: Water Research, Vol. 47, No. 15, 2013, p. 5564-5574.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass

AU - Pellicer i Nàcher, Carles

AU - Domingo Felez, Carlos

AU - Mutlu, Ayten Gizem

AU - Smets, Barth F.

PY - 2013

Y1 - 2013

N2 - Extracellular polymeric substances (EPS) have a presumed determinant role in the structure, architecture, strength, filterability, and settling behaviour of microbial solids in biological wastewater treatment processes. Consequently, numerous EPS extraction protocols have recently been published that aim to optimize the trade off between high EPS recovery and low cell lysis. Despite extensive efforts, the obtained results are often contradictory, even when analysing similar biomass samples and using similar experimental conditions, which greatly complicates the selection of an extraction protocol. This study presents a rigorous and critical assessment of existing physical and chemical EPS extraction methods applied to mixed-culture biomass samples (nitrifying, nitritation-anammox, and activated sludge biomass). A novel fluorescence-based method was developed and calibrated to quantify the lysis potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in severe underestimation of protein and carbohydrate concentrations by using standard analytical methods. Keeping both maximum EPS extraction yields and minimal biomass lysis as criteria, it was identified a sonication-based extraction method as the best to determine and compare tightly-bound EPS fractions in different biomass samples. Protein was consistently the main EPS component in all analysed samples. However, EPS from nitrifying enrichments was richer in DNA, the activated sludge EPS had a higher content in humic acids and carbohydrates, and the nitritation-anammox EPS, while similar in composition to the nitrifier EPS, had a lower fraction of hydrophobic biopolymers. In general, the easily-extractable EPS fraction was more abundant in carbohydrates and humic substances, while DNA could only be found in tightly bound EPS fractions. In conclusion, the methodology presented herein supports the rational selection of analytical tools and EPS extraction protocols in further EPS characterization studies.

AB - Extracellular polymeric substances (EPS) have a presumed determinant role in the structure, architecture, strength, filterability, and settling behaviour of microbial solids in biological wastewater treatment processes. Consequently, numerous EPS extraction protocols have recently been published that aim to optimize the trade off between high EPS recovery and low cell lysis. Despite extensive efforts, the obtained results are often contradictory, even when analysing similar biomass samples and using similar experimental conditions, which greatly complicates the selection of an extraction protocol. This study presents a rigorous and critical assessment of existing physical and chemical EPS extraction methods applied to mixed-culture biomass samples (nitrifying, nitritation-anammox, and activated sludge biomass). A novel fluorescence-based method was developed and calibrated to quantify the lysis potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in severe underestimation of protein and carbohydrate concentrations by using standard analytical methods. Keeping both maximum EPS extraction yields and minimal biomass lysis as criteria, it was identified a sonication-based extraction method as the best to determine and compare tightly-bound EPS fractions in different biomass samples. Protein was consistently the main EPS component in all analysed samples. However, EPS from nitrifying enrichments was richer in DNA, the activated sludge EPS had a higher content in humic acids and carbohydrates, and the nitritation-anammox EPS, while similar in composition to the nitrifier EPS, had a lower fraction of hydrophobic biopolymers. In general, the easily-extractable EPS fraction was more abundant in carbohydrates and humic substances, while DNA could only be found in tightly bound EPS fractions. In conclusion, the methodology presented herein supports the rational selection of analytical tools and EPS extraction protocols in further EPS characterization studies.

KW - Nitric oxide

KW - Nitrous oxide

KW - Anammox

KW - Modeling

KW - Biofilm

KW - Periodic aeration

U2 - 10.1016/j.watres.2013.06.026

DO - 10.1016/j.watres.2013.06.026

M3 - Journal article

C2 - 23866135

VL - 47

SP - 5564

EP - 5574

JO - Water Research

JF - Water Research

SN - 0043-1354

IS - 15

ER -