TY - JOUR
T1 - CRISPR–Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes
AU - Tong, Yaojun
AU - Whitford, Christopher M.
AU - Blin, Kai
AU - Jørgensen, Tue S.
AU - Weber, Tilmann
AU - Lee, Sang Yup
PY - 2020
Y1 - 2020
N2 - Streptomycetes are prominent sources of bioactive natural products, but metabolic engineering of the natural products of these organisms is greatly hindered by relatively inefficient genetic manipulation approaches. New advances in genome editing techniques, particularly CRISPR-based tools, have revolutionized genetic manipulation of many organisms, including actinomycetes. We have developed a comprehensive CRISPR toolkit that includes several variations of ‘classic’ CRISPR–Cas9 systems, along with CRISPRi and CRISPR-base editing systems (CRISPR-BEST) for streptomycetes. Here, we provide step-by-step protocols for designing and constructing the CRISPR plasmids, transferring these plasmids to the target streptomycetes, and identifying correctly edited clones. Our CRISPR toolkit can be used to generate random-sized deletion libraries, introduce small indels, generate in-frame deletions of specific target genes, reversibly suppress gene transcription, and substitute single base pairs in streptomycete genomes. Furthermore, the toolkit includes a Csy4-based multiplexing option to introduce multiple edits in a single experiment. The toolkit can be easily extended to other actinomycetes. With our protocol, it takes <10 d to inactivate a target gene, which is much faster than alternative protocols.
AB - Streptomycetes are prominent sources of bioactive natural products, but metabolic engineering of the natural products of these organisms is greatly hindered by relatively inefficient genetic manipulation approaches. New advances in genome editing techniques, particularly CRISPR-based tools, have revolutionized genetic manipulation of many organisms, including actinomycetes. We have developed a comprehensive CRISPR toolkit that includes several variations of ‘classic’ CRISPR–Cas9 systems, along with CRISPRi and CRISPR-base editing systems (CRISPR-BEST) for streptomycetes. Here, we provide step-by-step protocols for designing and constructing the CRISPR plasmids, transferring these plasmids to the target streptomycetes, and identifying correctly edited clones. Our CRISPR toolkit can be used to generate random-sized deletion libraries, introduce small indels, generate in-frame deletions of specific target genes, reversibly suppress gene transcription, and substitute single base pairs in streptomycete genomes. Furthermore, the toolkit includes a Csy4-based multiplexing option to introduce multiple edits in a single experiment. The toolkit can be easily extended to other actinomycetes. With our protocol, it takes <10 d to inactivate a target gene, which is much faster than alternative protocols.
U2 - 10.1038/s41596-020-0339-z
DO - 10.1038/s41596-020-0339-z
M3 - Journal article
C2 - 32651565
AN - SCOPUS:85087673586
SN - 1754-2189
VL - 15
SP - 2470
EP - 2502
JO - Nature Protocols
JF - Nature Protocols
IS - 8
ER -