CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains

Vratislav Stovicek, Irina Borodina, Jochen Förster

Research output: Contribution to journalJournal articleResearchpeer-review

873 Downloads (Pure)


There is a demand to develop 3rd generation biorefineries that integrate energy production with the production of higher value chemicals from renewable feedstocks. Here, robust and stress-tolerant industrial strains of Saccharomyces cerevisiae will be suitable production organisms. However, their genetic manipulation is challenging, as they are usually diploid or polyploid. Therefore, there is a need to develop more efficient genetic engineering tools. We applied a CRISPR–Cas9 system for genome editing of different industrial strains, and show simultaneous disruption of two alleles of a gene in several unrelated strains with the efficiency ranging between 65% and 78%. We also achieved simultaneous disruption and knock-in of a reporter gene, and demonstrate the applicability of the method by designing lactic acid-producing strains in a single transformation event, where insertion of a heterologous gene and disruption of two endogenous genes occurred simultaneously. Our study provides a foundation for efficient engineering of industrial yeast cell factories.
Original languageEnglish
JournalMetabolic Engineering Communications
Pages (from-to)13-22
Number of pages10
Publication statusPublished - 2015

Bibliographical note

This is an open access article under the CCBY-NC-ND license (


  • CRISPR–Cas9
  • Genome editing
  • Industrial yeast
  • Biorefineries
  • Chemical production


Dive into the research topics of 'CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains'. Together they form a unique fingerprint.

Cite this