TY - JOUR
T1 - Cr3+-Doped Fluorides and Oxides: Role of Internal Fields and Limitations of the Tanabe–Sugano Approach
AU - Trueba, A.
AU - García Lastra, Juan Maria
AU - Garcia-Fernandez, P.
AU - Aramburu, J.A.
AU - Barriuso, M.T.
AU - Moreno, M.
PY - 2011
Y1 - 2011
N2 - This work is aimed at clarifying the changes on optical spectra of Cr 3+ impurities due to either a host lattice variation or a hydrostatic pressure, which can hardly be understood by means of the usual Tanabe - Sugano (TS) approach assuming that the Racah parameter, B, grows when covalency decreases. For achieving this goal, the optical properties of Cr 3+-doped LiBaF3 and KMgF3 model systems have been explored by means of high level ab initio calculations on CrF 63- units subject to the electric field, ER(r), created by the rest of the lattice ions. These calculations, which reproduce available experimental data, indicate that the energy, E(2E), of the 2E(t2g3) → 4A 2(t2g3) emission transition is nearly independent of the host lattice. By contrast, the energy difference corresponding to 4A2(t2g3) → 4T1(t2g2eg1) and 4A2(t2g3) → 4T2(t2g2eg1) excitations, Δ(4T1; 4T2), is shown to increase on passing from the normal to the inverted perovskite host lattice despite the increase in covalency, a fact which cannot be accounted for through the usual TS model. Similarly, when the Cr3+ - F- distance, R, is reduced both Δ(4T1; 4T2) and the covalency are found to increase. By analyzing the limitations of the usual model, we found surprising results that are shown to arise from the deformation of both 3d(Cr) and ligand orbitals in the antibonding eg orbital, which has a σ character and is more extended than the π t2g orbital. By contrast, because of the higher stiffness of the t2g orbital, the dependence of E( 2E) with R basically follows the corresponding variation of covalency in that level. Bearing in mind the similarities of the optical properties displayed by Cr3+ impurities in oxides and fluorides, the present results can be useful for understanding experimental data on Cr 3+-based gemstones where the local symmetry is lower than cubic. © 2011 American Chemical Society.
AB - This work is aimed at clarifying the changes on optical spectra of Cr 3+ impurities due to either a host lattice variation or a hydrostatic pressure, which can hardly be understood by means of the usual Tanabe - Sugano (TS) approach assuming that the Racah parameter, B, grows when covalency decreases. For achieving this goal, the optical properties of Cr 3+-doped LiBaF3 and KMgF3 model systems have been explored by means of high level ab initio calculations on CrF 63- units subject to the electric field, ER(r), created by the rest of the lattice ions. These calculations, which reproduce available experimental data, indicate that the energy, E(2E), of the 2E(t2g3) → 4A 2(t2g3) emission transition is nearly independent of the host lattice. By contrast, the energy difference corresponding to 4A2(t2g3) → 4T1(t2g2eg1) and 4A2(t2g3) → 4T2(t2g2eg1) excitations, Δ(4T1; 4T2), is shown to increase on passing from the normal to the inverted perovskite host lattice despite the increase in covalency, a fact which cannot be accounted for through the usual TS model. Similarly, when the Cr3+ - F- distance, R, is reduced both Δ(4T1; 4T2) and the covalency are found to increase. By analyzing the limitations of the usual model, we found surprising results that are shown to arise from the deformation of both 3d(Cr) and ligand orbitals in the antibonding eg orbital, which has a σ character and is more extended than the π t2g orbital. By contrast, because of the higher stiffness of the t2g orbital, the dependence of E( 2E) with R basically follows the corresponding variation of covalency in that level. Bearing in mind the similarities of the optical properties displayed by Cr3+ impurities in oxides and fluorides, the present results can be useful for understanding experimental data on Cr 3+-based gemstones where the local symmetry is lower than cubic. © 2011 American Chemical Society.
U2 - 10.1021/jp207249w
DO - 10.1021/jp207249w
M3 - Journal article
C2 - 21981751
SN - 1089-5639
VL - 115
SP - 13399
EP - 13406
JO - Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory
JF - Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory
IS - 46
ER -