Coupled Motion and Sloshing Analysis of a Rigid Cylindrical - Closed Fish Cage in Regular Waves

Yuelin Tan*, Yanlin Shao, Robert Read

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    184 Downloads (Pure)

    Abstract

    been developed to study the interaction between interior liquid sloshing and the motion of a cylindrical closed fish cage when the cage is exposed to regular waves. The single-dominant nonlinear multimodal theory for sloshing in a cylindrical cage presented in [1] was implemented to simulate the liquid responses in the cage. A time-domain simulator based on the Cummins formulation of the equations of motion [2] is used to solve for the cage motion, while WAMIT is used to provide all required frequency-domain hydrodynamic coefficients for the external diffraction/radiation problems. Details of the coupling between cage motion and sloshing will be presented.
    The coupled solver is verified against the linear frequency-domain solution from WAMIT for the very small wave steepness, where linear theory is valid. The results show that the sloshing effect is a vital factor in the coupling process, which means that the liquid in the closed cage cannot be treated as a solid mass. This is particularly true close to the resonant frequencies of the liquid in the tank. Furthermore, the importance of nonlinearity due to sloshing responses is investigated by applying incident waves with different steepness. When the cage is exposed to regular waves, if certain criteria are met, nonlinear swirling waves are observed in the closed cage. The nonlinear swirling waves are due to the interactions between different sloshing modes, which can only be explained by a proper nonlinear theory, such as the multimodal theory applied in this study. The influence of the swirling waves on the cage motions will also be discussed in the paper. How this effect will impact the design of a closed fish cage and its mooring system can only be answered by studying the cage responses in irregular waves, which is the subject of ongoing research.
    Original languageEnglish
    Title of host publication38th International Conference on Ocean, Offshore & Arctic Engineering
    Number of pages13
    Volume6: Ocean Space Utilization
    PublisherThe American Society of Mechanical Engineers (ASME)
    Publication date2019
    Article numberOMAE2019-96002
    ISBN (Electronic) 978-0-7918-5883-7
    DOIs
    Publication statusPublished - 2019
    Event38th International Conference on Ocean, Offshore and Arctic Engineering - Crowne Plaza Hotel, Glasgow, United Kingdom
    Duration: 9 Jun 201914 Jun 2019

    Conference

    Conference38th International Conference on Ocean, Offshore and Arctic Engineering
    LocationCrowne Plaza Hotel
    Country/TerritoryUnited Kingdom
    CityGlasgow
    Period09/06/201914/06/2019

    Fingerprint

    Dive into the research topics of 'Coupled Motion and Sloshing Analysis of a Rigid Cylindrical - Closed Fish Cage in Regular Waves'. Together they form a unique fingerprint.

    Cite this