Corrigendum to “Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics” [Biomaterials 192 (2019) 551–559] (Biomaterials (2019) 192 (551–559), (S0142961218308111), (10.1016/j.biomaterials.2018.11.028))

Svenja Siemer, Dana Westmeier, Matthias Barz, Jonas Eckrich, Désirée Wünsch, Christof Seckert, Christian Thyssen, Oliver Schilling, Mike Hasenberg, Chengfang Pang, Dominic Docter, Shirley K. Knauer, Roland H. Stauber*, Sebastian Strieth

*Corresponding author for this work

    Research output: Contribution to journalComment/debateResearchpeer-review

    Abstract

    The authors regret that Fig. 1 contained inadvertent errors (Fig. 1d/e) in the above article. Fig. 1d (upper panel) seems to show Staphylococcus aureus instead of methicillin-resistant Staphylococcus aureus (MRSA) cells. These were replaced by correct images. Fig. 1e: Quantification of NP-E.coli interaction. A wrong figure was presented, which was replaced by the correct figure showing the quantification of NP-E.coli interaction by live cell microscopy. Corrected versions of figures, figure legends, and of the main text are shown below. These corrections do not affect the interpretation of data or the conclusion of the study. [Figure presented] Fig. 1 NPs' physico-chemical properties affect their assembly on bacteria. a, 'Pulse-chase' workflow to analyze parameters and impact of NP-pathogen interaction. Following co-incubation in distinct media, NP-bacteria complexes are harvested by mild centrifugation. Unattached NPs remain in the supernatant and are removed. NP-bacteria complexes can subsequently be analysed via different methods. b, In situ complex formation with autofluorescent pathogens. Living bacteria were incubated with fluorescent silica (SiR/G) and analysed by microscopy. Scale bar 2 μm. c, SEM to visualize assembly of Si (∅~30/140 nm) and Ag NP. Scale bars: 1 μm. d, NP binding to multi-drug resistant (MDR) pathogens. Stained bacteria were incubated with fluorescent SiG/R NP. Scale bar: 2 μm. e, Quantification of NP-E.coli interaction by live cell fluorescence microscopy. Fluorescence of both bacteria (green) and silica based NPs (red) in a set of three independent regions of interest (ROI) (200 × 200 pixel) per sample were analysed by ImageJ fluorescence quantification. Values were corrected for background fluorescence and averaged. The highest ratio of NPs to bacteria was set “1”. Compared to small Si30 (∅~30 nm), larger silica Si140 (∅~140 nm) displayed reduced binding. Surface modification with steric molecules (OSiRPEG/OSiRPEtO) reduced binding. MRSA: methicillin-resistant S. aureus. The authors would like to apologise for any inconvenience caused.

    Original languageEnglish
    Article number120371
    JournalBiomaterials
    Volume263
    ISSN0142-9612
    DOIs
    Publication statusPublished - 2020

    Bibliographical note

    Refers to: Svenja Siemer, Dana Westmeier, Matthias Barz, Jonas Eckrich, Désirée Wünsch, Christof Seckert, Christian Thyssen, Oliver Schilling, Mike Hasenberg, Chengfang Pang, Dominic Docter, Shirley K. Knauer, Roland H. Stauber, Sebastian Strieth
    Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics
    Biomaterials, Volume 192, February 2019, Pages 551-559

    Fingerprint

    Dive into the research topics of 'Corrigendum to “Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics” [Biomaterials 192 (2019) 551–559] (Biomaterials (2019) 192 (551–559), (S0142961218308111), (10.1016/j.biomaterials.2018.11.028))'. Together they form a unique fingerprint.

    Cite this