Corrections to “Lower Bounds on Q for Finite Size Antennas of Arbitrary Shape”

Oleksiy S. Kim

Research output: Contribution to journalJournal articleResearchpeer-review

245 Downloads (Pure)


Equations (24) and (25) in [1, Appendix B] should, respectively, read as \begin{align*}&\hspace {-2pc}\int \nolimits _{V_\infty }-(\nabla G_{1}) G_{2}^{*} - {\hat {\boldsymbol {r}}} jk\frac {e^{jk( {\boldsymbol {r}}_{1}- {\boldsymbol {r}}_{2})\cdot {\hat {\boldsymbol {r}}} }}{16\pi ^{2}| {\boldsymbol {r}}|^{2}} {dV} =-\frac { {\boldsymbol {r}}_{12}}{| {\boldsymbol {r}}_{12}|}\frac {\cos (k| {\boldsymbol {r}}_{12}|)}{8\pi } \notag \\&-\, j\frac {2 {\boldsymbol {r}}_{1}}{8\pi k^{2}}\left ({ \frac {\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{3}}-\frac {k\cos (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{2}} }\right )\notag \\&-\, j\frac {| {\boldsymbol {r}}_{1}|^{2}-| {\boldsymbol {r}}_{2}|^{2}}{8\pi k^{2}}\frac { {\boldsymbol {r}}_{12}}{| {\boldsymbol {r}}_{12}|^{2}}\notag \\&\times \left ({ \frac {k^{2}\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|}- 3\left ({\frac {\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{3}}-\frac {k\cos (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{2}} }\right )}\right ) \end{align*} and \begin{align*}&\hspace {-2pc}\int \nolimits _{V_\infty } j(\nabla G_{1}) G_{2}^{*} - {\hat {\boldsymbol {r}}} k\frac {e^{jk( {\boldsymbol {r}}_{1}- {\boldsymbol {r}}_{2})\cdot {\hat {\boldsymbol {r}}} }}{16\pi ^{2}| {\boldsymbol {r}}|^{2}} {dV} =j\frac { {\boldsymbol {r}}_{12}}{| {\boldsymbol {r}}_{12}|}\frac {\cos (k| {\boldsymbol {r}}_{12}|)}{8\pi } \\&{-} \frac { {\boldsymbol {r}}_{12}}{8\pi k^{2}}\left ({ \frac {\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{3}}-\frac {k\cos (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{2}} }\right ) \\&{-} \frac { {\boldsymbol {r}}_{1}+ {\boldsymbol {r}}_{2}}{8\pi k^{2}}\left ({ \frac {\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{3}}-\frac {k\cos (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{2}} }\right ) \\&{-} \frac {| {\boldsymbol {r}}_{1}|^{2}-| {\boldsymbol {r}}_{2}|^{2}}{8\pi k^{2}}\frac { {\boldsymbol {r}}_{12}}{| {\boldsymbol {r}}_{12}|^{2}} \\&\times \left ({ \frac {k^{2}\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|}-3\left ({\frac {\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{3}}-\frac {k\cos (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{2}} }\right )}\right ) \\=&j\frac { {\boldsymbol {r}}_{12}}{2} \text {Re}\{G_{12}\}-\frac {1}{2 k^{2}} \text {Im}\{\nabla _{1} G_{12}\} \\&{-}\frac { {\boldsymbol {r}}_{1}+ {\boldsymbol {r}}_{2}}{2 k^{2}} \text {Im}\left \{{\nabla _{1} G_{12}\cdot \frac { {\boldsymbol {r}}_{12}}{| {\boldsymbol {r}}_{12}|^{2}}}\right \} \\&{+}\frac {| {\boldsymbol {r}}_{1}|^{2}-| {\boldsymbol {r}}_{2}|^{2}}{2k^{2}| {\boldsymbol {r}}_{12}|^{2}} \text {Im}\{ {\boldsymbol {r}}_{12}k^{2}G_{12}+3\nabla _{1} G_{12}\}. \end{align*}
Original languageEnglish
JournalI E E E Transactions on Antennas and Propagation
Issue number5
Pages (from-to)2773-2773
Number of pages1
Publication statusPublished - 2017

Bibliographical note

(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.


Dive into the research topics of 'Corrections to “Lower Bounds on Q for Finite Size Antennas of Arbitrary Shape”'. Together they form a unique fingerprint.

Cite this