Corrections to “Lower Bounds on Q for Finite Size Antennas of Arbitrary Shape”

Oleksiy S. Kim

    Research output: Contribution to journalJournal articleResearchpeer-review

    275 Downloads (Pure)

    Abstract

    Equations (24) and (25) in [1, Appendix B] should, respectively, read as \begin{align*}&\hspace {-2pc}\int \nolimits _{V_\infty }-(\nabla G_{1}) G_{2}^{*} - {\hat {\boldsymbol {r}}} jk\frac {e^{jk( {\boldsymbol {r}}_{1}- {\boldsymbol {r}}_{2})\cdot {\hat {\boldsymbol {r}}} }}{16\pi ^{2}| {\boldsymbol {r}}|^{2}} {dV} =-\frac { {\boldsymbol {r}}_{12}}{| {\boldsymbol {r}}_{12}|}\frac {\cos (k| {\boldsymbol {r}}_{12}|)}{8\pi } \notag \\&-\, j\frac {2 {\boldsymbol {r}}_{1}}{8\pi k^{2}}\left ({ \frac {\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{3}}-\frac {k\cos (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{2}} }\right )\notag \\&-\, j\frac {| {\boldsymbol {r}}_{1}|^{2}-| {\boldsymbol {r}}_{2}|^{2}}{8\pi k^{2}}\frac { {\boldsymbol {r}}_{12}}{| {\boldsymbol {r}}_{12}|^{2}}\notag \\&\times \left ({ \frac {k^{2}\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|}- 3\left ({\frac {\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{3}}-\frac {k\cos (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{2}} }\right )}\right ) \end{align*} and \begin{align*}&\hspace {-2pc}\int \nolimits _{V_\infty } j(\nabla G_{1}) G_{2}^{*} - {\hat {\boldsymbol {r}}} k\frac {e^{jk( {\boldsymbol {r}}_{1}- {\boldsymbol {r}}_{2})\cdot {\hat {\boldsymbol {r}}} }}{16\pi ^{2}| {\boldsymbol {r}}|^{2}} {dV} =j\frac { {\boldsymbol {r}}_{12}}{| {\boldsymbol {r}}_{12}|}\frac {\cos (k| {\boldsymbol {r}}_{12}|)}{8\pi } \\&{-} \frac { {\boldsymbol {r}}_{12}}{8\pi k^{2}}\left ({ \frac {\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{3}}-\frac {k\cos (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{2}} }\right ) \\&{-} \frac { {\boldsymbol {r}}_{1}+ {\boldsymbol {r}}_{2}}{8\pi k^{2}}\left ({ \frac {\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{3}}-\frac {k\cos (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{2}} }\right ) \\&{-} \frac {| {\boldsymbol {r}}_{1}|^{2}-| {\boldsymbol {r}}_{2}|^{2}}{8\pi k^{2}}\frac { {\boldsymbol {r}}_{12}}{| {\boldsymbol {r}}_{12}|^{2}} \\&\times \left ({ \frac {k^{2}\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|}-3\left ({\frac {\sin (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{3}}-\frac {k\cos (k| {\boldsymbol {r}}_{12}|)}{| {\boldsymbol {r}}_{12}|^{2}} }\right )}\right ) \\=&j\frac { {\boldsymbol {r}}_{12}}{2} \text {Re}\{G_{12}\}-\frac {1}{2 k^{2}} \text {Im}\{\nabla _{1} G_{12}\} \\&{-}\frac { {\boldsymbol {r}}_{1}+ {\boldsymbol {r}}_{2}}{2 k^{2}} \text {Im}\left \{{\nabla _{1} G_{12}\cdot \frac { {\boldsymbol {r}}_{12}}{| {\boldsymbol {r}}_{12}|^{2}}}\right \} \\&{+}\frac {| {\boldsymbol {r}}_{1}|^{2}-| {\boldsymbol {r}}_{2}|^{2}}{2k^{2}| {\boldsymbol {r}}_{12}|^{2}} \text {Im}\{ {\boldsymbol {r}}_{12}k^{2}G_{12}+3\nabla _{1} G_{12}\}. \end{align*}
    Original languageEnglish
    JournalI E E E Transactions on Antennas and Propagation
    Volume65
    Issue number5
    Pages (from-to)2773-2773
    Number of pages1
    ISSN0018-926X
    DOIs
    Publication statusPublished - 2017

    Bibliographical note

    (c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

    Fingerprint

    Dive into the research topics of 'Corrections to “Lower Bounds on Q for Finite Size Antennas of Arbitrary Shape”'. Together they form a unique fingerprint.

    Cite this