In this paper, coordinated fast primary frequency control (FPFC) from offshore wind power plants (OWPPs) integrated to surrounding onshore AC power system through a three terminal VSC HVDC system is presented. The onshore AC grid frequency variations are emulated at offshore AC grid through appropriate control blocks, based on modulation of the DC grid voltage. The proposed FPFC produces a power reference to the OWPP based on the frequency deviation and its rate of change measured in the offshore AC grid. Moreover, the impact of wind speed variations on the OWPP active power output and the dynamics of wind turbine are also discussed. The corresponding impact of OWPPs active power output variation at different wind speeds on the power system frequency control and DC grid voltage is also presented. The results show that the proposed coordinated fast primary frequency control from OWPPs improves the power system frequency while relieving the stress on the other AC grid participating in frequency control.

General information
Publication status: Published
Organisations: Department of Wind Energy, Integration & Planning
Contributors: Sakamuri, J. N., Hansen, A. D., Cutululis, N. A., Altin, M., Sørensen, P. E.
Number of pages: 8
Publication date: 2016

Host publication information
Publisher: IEEE
ISBN (Print): 9781467384636
Keywords: Coordinated frequency control, HVDC, Offshore wind power plants, Ramp rate limiter, RMS models
DOIs:
10.1109/ENERGYCON.2016.7513986
Source: PublicationPreSubmission
Source-ID: 123980151
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2016 › Research › peer-review