Abstract
There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar panels with uncontrolled inverters, the upper limit of installable capacity is quickly reached in many of today’s distribution feeders. This problem can often be mitigated by optimally controlling the voltage angles of inverters. However, the optimal power flow problem in its standard form is a large scale non-convex optimization problem, and thus can’t be solved precisely and also is computationally heavy and intractable for large systems. This paper examines the use of a convex relaxation using Semi-definite programming to optimally control solar power inverters in a distribution grid in order to minimize the global line losses of the feeder. The mathematical model is presented in details. Further, case studies are completed with simulations involving a 15-bus radial distribution system. These simulations are run for 24 hour periods, with actual solar data and demand data.
Original language | English |
---|---|
Journal | Energy Procedia |
Volume | 100 |
Pages (from-to) | 43-49 |
Number of pages | 9 |
ISSN | 1876-6102 |
DOIs | |
Publication status | Published - 2016 |
Event | 3rd International Conference on Power and Energy Systems Engineering - Kyushu Institute of Technology, Kitakyushu, Japan Duration: 8 Sept 2016 → 12 Sept 2016 Conference number: 3 |
Conference
Conference | 3rd International Conference on Power and Energy Systems Engineering |
---|---|
Number | 3 |
Location | Kyushu Institute of Technology |
Country/Territory | Japan |
City | Kitakyushu |
Period | 08/09/2016 → 12/09/2016 |