Abstract
Asymmetric line shapes can occur in the transmission function describing electron transport in the vicinity of a minimum caused by quantum interference effects. Such asymmetry can be used to increase the thermoelectric efficiency of molecular junctions. So far, however, asymmetric line shapes have been only empirically found for just a few rather complex organic molecules where the origins of the line shapes relation to molecular structure were not resolved. In the present, work we introduce a method to analyze the structure dependence of the asymmetry of interference dips from simple two site tight-binding models, where one site corresponds to a molecular π orbital of the wire and the other to an atomic pz orbital of a side group, which allows us to characterize analytically the peak shape in terms of just two parameters. We assess our scheme with first-principles electron transport calculations for a variety of t-stub molecules and also address their suitability for thermoelectric applications.
Original language | English |
---|---|
Journal | Journal of Chemical Physics |
Volume | 135 |
Issue number | 15 |
Pages (from-to) | 154109 |
ISSN | 0021-9606 |
DOIs | |
Publication status | Published - 2011 |