Abstract
Nature has the exquisite ability to design specific surface patterns and topologies on both the macro- and nanolength scales that relate to precise functions. Following a biomimetic approach, we have engineered fully synthetic nanoparticles that are able to self-organize their surface into controlled domains. We focused on Polymeric vesicles or "polymersomes"; enclosed membranes formed via self-assembly,of amphiphilic block copolymers In water. Exploiting the Intrinsic thermodynamic tendency of dissimilar polymers to undergo phase separation, we mixed different vesicle forming block copolymers In various proportions In order to obtain a wide range of polymersomes with differing surface domains. Using a combination of confocal laser. scanning microscopy studies of micrometer-sized polymersomes, and electron microscopy, atomic force microscopy, and fluorescence spectroscopy on nanometer-sized polymersomes, we find that the domains exhibit similar shapes on both the micro- and nanolength scales, with dimensions that are linearly proportional to the vesicle diameter. Finally, we demonstrate that such control over the surface "patchiness" of these polymersomes determines their cell internalization kinetics for live cells.
Original language | English |
---|---|
Journal | A C S Nano |
Volume | 5 |
Issue number | 3 |
Pages (from-to) | 1775-1784 |
Number of pages | 10 |
ISSN | 1936-0851 |
DOIs | |
Publication status | Published - 2011 |
Externally published | Yes |
Keywords
- Polymersomes
- Patchy nanoparticles
- Phase separation
- Endocytosis