Continuum Navier-Stokes modelling of water ow past fullerene molecules

J. H. Walther, A. Popadic, P. Koumoutsakos, M. Praprotnik

    Research output: Contribution to conferenceConference abstract for conferenceResearchpeer-review

    115 Downloads (Pure)

    Abstract

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.
    Original languageEnglish
    Publication date2015
    Number of pages1
    Publication statusPublished - 2015
    Event 68th Annual Meeting of the American Physical Society's Division of Fluid Dynamics (DFD) - Boston, United States
    Duration: 22 Nov 201524 Nov 2015
    https://apsdfd2015.mit.edu/home

    Conference

    Conference 68th Annual Meeting of the American Physical Society's Division of Fluid Dynamics (DFD)
    Country/TerritoryUnited States
    CityBoston
    Period22/11/201524/11/2015
    Internet address

    Fingerprint

    Dive into the research topics of 'Continuum Navier-Stokes modelling of water ow past fullerene molecules'. Together they form a unique fingerprint.

    Cite this