Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system - DTU Orbit (03/11/2019)

Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system

A chitosanolytic activity found in a commercial α-amylase from *Bacillus amyloyquefaciens* (BAN) was covalently immobilized onto glyoxal agarose beads (25% recovery of activity) and assessed for the continuous production of chitooligosaccharides (COS). The immobilization did not change the reaction profile (with chitotriose and chitobiose as major products, using chitosans of different polymerization and deacetylation degrees), but significantly increased the enzyme thermostability. A two-step process was proposed, in which chitosan was first hydrolyzed in a batch reactor to a viscosity that could flow through a packed-bead reactor (PBR), thus avoiding clogging of the column. The relationship between hydrolysis degree of chitosan (1% w/v) and viscosity of the solution was assessed in a batch reactor. A 50% hydrolyzed chitosan did not cause any clogging of the PBR. Under these conditions, the productivity of the PBR at the lowest dilution rate was 37 gCOS L$^{-1}$ h$^{-1}$, with a conversion yield of 73%. In contrast, at the highest dilution rate, the productivity was nearly 200 gCOS L$^{-1}$ h$^{-1}$, but the conversion yield dropped to around 40%.

General information

Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, CAPEC-PROCESS, Instituto de Catálisis y Petroleoquímica
Contributors: Santos-Moriano, P., Woodley, J., Plou, F. J.
Pages: 211-217
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Journal of Molecular Catalysis B: Enzymatic
Volume: 133
ISSN (Print): 1381-1177
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.39 SJR 0.647 SNIP 0.901
Web of Science (2016): Impact factor 2.269
Web of Science (2016): Indexed yes
Original language: English
Keywords: Chitooligosaccharides, Chitosanolytic enzymes, Covalent immobilization, Glyoxal agarose, Packed-bead reactor, Process optimization
DOIs:
10.1016/j.molcatb.2016.09.001
Source: FindIt
Source ID: 2343101880
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review