Abstract
Purpose – The purpose of this paper was to analyse typical printed circuit board assemblies (PCBAs) processed by reflow, wave or selective
wave soldering for typical levels of process-related residues, resulting from a specific or combination of soldering processes. Typical solder
flux residue distribution pattern, composition and concentration are profiled and reported. The effect of such contaminants on conformal
coating was tested.
Design/methodology/approach – Presence of localized flux residues was visualized using a commercial residue reliability assessment testing gel test and chemical structure was identified by Fourier transform infrared spectroscopy, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode set-up. Localized extraction of residue was carried out using a commercial critical contamination control extraction system.
Findings – Results clearly show that the amount and distribution of flux residues are a function of the soldering process, and the level can be reduced by an appropriate cleaning. Selective soldering process generates significantly higher levels of residues compared to the wave and reflow process. For conformal coated PCBAs, the contamination levels generated from the tested wave and selective soldering process are found to be enough to generate blisters under exposure to high humidity levels.
Originality/value – Although it is generally known that different soldering processes can introduce contamination on the PCBA surface, compromising its cleanliness, no systematic work is reported investigating the relative levels of residue introduced by various soldering processes and its effect on corrosion reliability.
Design/methodology/approach – Presence of localized flux residues was visualized using a commercial residue reliability assessment testing gel test and chemical structure was identified by Fourier transform infrared spectroscopy, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode set-up. Localized extraction of residue was carried out using a commercial critical contamination control extraction system.
Findings – Results clearly show that the amount and distribution of flux residues are a function of the soldering process, and the level can be reduced by an appropriate cleaning. Selective soldering process generates significantly higher levels of residues compared to the wave and reflow process. For conformal coated PCBAs, the contamination levels generated from the tested wave and selective soldering process are found to be enough to generate blisters under exposure to high humidity levels.
Originality/value – Although it is generally known that different soldering processes can introduce contamination on the PCBA surface, compromising its cleanliness, no systematic work is reported investigating the relative levels of residue introduced by various soldering processes and its effect on corrosion reliability.
Original language | English |
---|---|
Journal | Soldering & Surface Mount Technology |
Volume | 26 |
Issue number | 4 |
Pages (from-to) | 194–202 |
ISSN | 0954-0911 |
DOIs | |
Publication status | Published - 2014 |
Keywords
- Flux
- Solder
- Board assembly
- Conformal coatings