Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower control bandwidth and higher output voltage ripple, which are undesirable. This paper proposes a new self-oscillating control scheme that maintains a constant switching frequency over the full range of output voltage. The frequency difference is processed by a compensator whose output adjusts the total loop gain of the control system. It has been proven by simulation that a constant switching frequency self-oscillating converter is achieved and the proposed control circuit performs satisfactorily.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Electronics
Contributors: Nguyen-Duy, K., Knott, A., Andersen, M. A. E.
Pages: 84-88
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Elektronika ir Elektrotechnika
Volume: 20
Issue number: 6
ISSN (Print): 1392-1215
Ratings:
Scopus rating (2014): CiteScore 0.66 SJR 0.305 SNIP 0.646
Web of Science (2014): Impact factor 0.561
Web of Science (2014): Indexed yes
Original language: English
Keywords: Power amplifiers, Frequency control, Voltage control, Power electronics
Electronic versions:
7273_23240_1_PB.pdf
DOIs:
10.5755/j01.eee.20.6.7273
Source: PublicationPreSubmission
Source-ID: 93422281
Research output: Contribution to journal › Journal article – Annual report year: 2014 › Research › peer-review