Consolidating sea level acceleration estimates from satellite altimetry

Tadea Veng*, Ole B. Andersen*

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    166 Downloads (Pure)

    Abstract

    More than 27 years of high precision satellite altimetry enables analysis of recent changes in global mean sea level (GMSL). Several previous studies present estimates of the trend and acceleration in GMSL; however, all are exclusively performed with data from the TOPEX/Poseidon, Jason-1, Jason-2 and Jason-3 missions (TPJ data). In this study we extend the altimetry record in both time and space by including independent data from the ERS-1, ERS-2, Envisat and CryoSat-2 missions (ESA data). This increases the time-series to span more than 27 years (1991.7–2019.0) and the spatial coverage is extended from ± 66° to ± 82° latitude. Another advantage of the ESA data is that it is independent of the issues associated with the TOPEX altimeter which introduce a significant uncertainty to the first part of the record. GMSL based on ESA data on the 1991–2019 period within ± 82° latitude exhibit an acceleration of 0.095 ± 0.009 mm/yr2. The corresponding value for the TPJ data is 0.080 ± 0.008 mm/yr2 for the 1993–2019 period and within ± 66° latitude. The ERS-1 satellite was launched shortly after the large Pinatubo eruption in 1991. The satellite observes a decrease of 6 mm in GMSL during the first 1.7 years until the launch of TOPEX/Poseidon. The distribution of sea level acceleration across the global ocean is highly similar between the ESA and TPJ dataset. In the Pacific Ocean regional sea level acceleration patterns seem related to the El-Niño Southern Oscillation (ENSO) whereas around Greenland a clear negative acceleration is seen.
    Original languageEnglish
    JournalAdvances in Space Research
    Volume68
    Issue number2
    Pages (from-to)496-503
    ISSN0273-1177
    DOIs
    Publication statusPublished - 2021

    Keywords

    • Sea Level Change
    • Global Ocean
    • Altimetry

    Fingerprint

    Dive into the research topics of 'Consolidating sea level acceleration estimates from satellite altimetry'. Together they form a unique fingerprint.

    Cite this