Abstract
We present numerical calculations of the conductance of an interface between a phase-coherent two-dimensional electron gas and a superconductor with a quantum point contact in the normal region. Using a scattering matrix approach we reconsider the geometry of De Raedt, Michielsen, and Klapwijk [Phys. Rev. B 50, 631 (1994)] which was studied within the time-dependent Bogoliubov-de Gennes formalism. We find that the factor-of-2 enhancement of the conductance G(NS) compared to the normal state conductance GN for ideal interfaces may be suppressed for interfaces with a quantum point contact with only a few propagating modes. The suppression is found to depend strongly on the position of the Fermi level. We also study the suppression due to a barrier at the interface and find an anomalous behavior caused by quasiparticle interference. Finally, we consider the limit of sequential tunneling and find a suppression of the factor-of-2 enhancement which may explain the absence of conductance enhanced in experiments on metal-superconductor structures. [S0163-1829(99)07943-6].
Original language | English |
---|---|
Journal | Physical Review B |
Volume | 60 |
Issue number | 19 |
Pages (from-to) | 13762-13769 |
ISSN | 2469-9950 |
DOIs | |
Publication status | Published - 1999 |
Bibliographical note
Copyright (1999) by the American Physical Society.Keywords
- FLUCTUATIONS
- METAL
- JOSEPHSON-JUNCTIONS
- TRANSPORT
- NANOSTRUCTURES
- CONSTRICTION
- SUPERCURRENT
- QUANTIZED CONDUCTANCE
- RESISTANCE
- ANDREEV REFLECTION