Abstract
Three different strategies of how to combine computational chemical product design with Monte Carlo based methods for uncertainty analysis of chemical properties are outlined. One method consists of a computer-aided molecular design (CAMD) solution and a post-processing property uncertainty propagation through the considered process. It is demonstrated for an industrial case study on identification of a suitable working fluid in a thermodynamic cycle for waste heat recovery. The results show that including property uncertainties gives an additional criterion for the fluid ranking in working fluid design. While the higher end of the uncertainty range of the process model output is similar for the best performing fluids, the lower end of the uncertainty range differs largely.
Original language | English |
---|---|
Title of host publication | Proceedings of the 27th European Symposium on Computer Aided Process Engineering (ESCAPE 27) |
Editors | Antonio Espuña, Moisès Graells, Luis Puigjaner |
Volume | 40 |
Publisher | Elsevier |
Publication date | 2017 |
Edition | 1 |
Pages | 973-978 |
ISBN (Print) | 9780444639653 |
ISBN (Electronic) | 9780444639707 |
DOIs | |
Publication status | Published - 2017 |
Event | 27th European Symposium on Computer Aided Process Engineering - Barcelona, Spain Duration: 1 Oct 2017 → 5 Oct 2017 Conference number: 27 https://www.elsevier.com/books/27th-european-symposium-on-computer-aided-process-engineering/espuna/978-0-444-63965-3 |
Conference
Conference | 27th European Symposium on Computer Aided Process Engineering |
---|---|
Number | 27 |
Country/Territory | Spain |
City | Barcelona |
Period | 01/10/2017 → 05/10/2017 |
Internet address |