TY - JOUR
T1 - Computational Analysis of Coagulation and Coalescence in the Flame Synthesis of Titania Particles
AU - Johannessen, Jens Tue
AU - Pratsinis, S.E.
AU - Livbjerg, Hans
PY - 2000
Y1 - 2000
N2 - A method of combining computational fluid dynamics with a mathematical model for the particle dynamics has been applied to simulate experimental data from the synthesis of TiO2-particles in diffusion flames. Parameters of the coalescence kinetics are estimated by fitting the model predictions to the measured specific surface area of the product particles. The estimated kinetics can be used to predict the surface area and aggregate structure of the particles for a wide range of synthesis conditions. The regular equation for the rate of coagulation is modified to take into account the effect of dilution. The accuracy of the results, especially the degree of aggregation, i.e. the aggregate size, is highly dependent on the inclusion of this effect. When the dilution is accounted for, the predicted aggregate sizes (numbers of primary particles per aggregate) compare well with reported data based on small-angle X-ray scattering measurements. (C) 2001 Elsevier Science BN. All rights reserved.
AB - A method of combining computational fluid dynamics with a mathematical model for the particle dynamics has been applied to simulate experimental data from the synthesis of TiO2-particles in diffusion flames. Parameters of the coalescence kinetics are estimated by fitting the model predictions to the measured specific surface area of the product particles. The estimated kinetics can be used to predict the surface area and aggregate structure of the particles for a wide range of synthesis conditions. The regular equation for the rate of coagulation is modified to take into account the effect of dilution. The accuracy of the results, especially the degree of aggregation, i.e. the aggregate size, is highly dependent on the inclusion of this effect. When the dilution is accounted for, the predicted aggregate sizes (numbers of primary particles per aggregate) compare well with reported data based on small-angle X-ray scattering measurements. (C) 2001 Elsevier Science BN. All rights reserved.
U2 - 10.1016/S0032-5910(00)00401-0
DO - 10.1016/S0032-5910(00)00401-0
M3 - Journal article
SN - 0032-5910
VL - 118
SP - 242
EP - 250
JO - Powder Technology
JF - Powder Technology
IS - 3
ER -