Compressibility of the high-pressure rocksalt phase of ZnO

J.M. Recio, M.A. Blanco, V. Luana, R. Pandey, Leif Gerward, J. Staun Olsen

Research output: Contribution to journalJournal articleResearchpeer-review

370 Downloads (Pure)

Abstract

We report the results of a combined experimental and theoretical investigation on the stability and the volume behavior under hydrostatic pressure of the rocksalt (B1) phase of ZnO. Synchrotron-radiation x-ray powder-diffraction data are obtained from 0 to 30 GPa. Static simulations of the ZnO B1 phase are performed using the ab initio perturbed ion method and the local and nonlocal approximations to the density-functional theory. After the pressure induced transition from the wurtzite phase, we have found that a large fraction of the B1 high-pressure phase is retained when pressure is released. The metastability of this ZnO polymorph is confirmed through the theoretical evaluation of the Hessian eigenvalues of a nine-parameter potential energy surface. This allows us to treat the experimental and theoretical pressure-volume data on an equal basis. In both cases, we have obtained values of the bulk modulus in the range of 160-194 GPa. For its zero-pressure first derivative, the experimental and theoretical data yield a value of 4.4+/-1.0. Overall, our results show that the ZnO B1 phase is slightly more compressible than previously reported. [S0163-1829(98)07537-7].
Original languageEnglish
JournalPhysical Review B
Volume58
Issue number14
Pages (from-to)8949-8954
ISSN2469-9950
DOIs
Publication statusPublished - 1998

Bibliographical note

Copyright (1998) by the American Physical Society.

Keywords

  • IONIC MATERIALS
  • STATE
  • MECHANICAL CLUSTER CALCULATIONS
  • PROGRAM
  • GPA
  • CRYSTALS
  • ALKALI-HALIDES
  • TRANSITIONS
  • HARTREE-FOCK
  • EQUATIONS

Cite this

Recio, J. M., Blanco, M. A., Luana, V., Pandey, R., Gerward, L., & Olsen, J. S. (1998). Compressibility of the high-pressure rocksalt phase of ZnO. Physical Review B, 58(14), 8949-8954. https://doi.org/10.1103/PhysRevB.58.8949