Comprehensive NMR Analysis of Pore Structures in Superabsorbing Cellulose Nanofiber Aerogels

Yashu Kharbanda, Mateusz Urbańczyk, Ossi Laitinen, Kirsten Inga Kling, Sakari Pallaspuro, Sanna Komulainen, Henrikki Liimatainen, Ville-Veikko Telkki*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

87 Downloads (Orbit)

Abstract

Highly porous cellulose nanofiber (CNF) aerogels are promising, environmentally friendly, reusable, and low-cost materials for severaladvanced environmental, biomedical, and electronic applications. The aerogels have a complex and hierarchical 3D porous network structure with pore sizes ranging from nanometers to hundreds of micrometers. The morphology of the network has a critical role on the performance of aerogels, but it is difficult to characterize thoroughly with traditional techniques. Here, we introduce a combination of nuclear magnetic resonance (NMR) spectroscopy techniques for comprehensive characterization of pore sizes and connectivity in the CNF aerogels. Cyclohexane absorbed in the aerogels was used as a probe fluid. NMR cryoporometry enabled us to characterize the size distribution of nanometer scale pores in between the cellulose nanofibers in the solid matrix of the aerogels. Restricted diffusion of cyclohexane revealed the size distribution of the dominant micrometer scale pores as well as the tortuosity of the pore network. T2 relaxation filtered microscopic magnetic resonance imaging (MRI) method allowed us to determine the size distribution of the largest, submillimeter scalepores. The NMR techniques are nondestructive, and they provide information about the whole sample volume (not only surfaces). Furthermore, they show how absorbed liquids experience the complex 3D pore structure. Thorough characterization of porous structures is important for understanding the properties of the aerogels and optimizing them for various applications. The introduced comprehensive NMR analysis set is widely usable for a broad range of different kinds of aerogels used in different applications, such as catalysis, batteries, supercapacitors, hydrogen storage, etc.
Original languageEnglish
JournalJournal of Physical Chemistry C
Volume123
Issue number51
Pages (from-to)30986-30995
ISSN1932-7447
DOIs
Publication statusPublished - 2019

Fingerprint

Dive into the research topics of 'Comprehensive NMR Analysis of Pore Structures in Superabsorbing Cellulose Nanofiber Aerogels'. Together they form a unique fingerprint.

Cite this