Abstract
Electrode materials are primarily chosen based on their work function to suit the energy levels of the absorber materials. In this paper, we focus on the modification of aluminum cathodes with a thin silver interlayer (2 nm) in copper indium sulfide/poly[(2,7-silafluorene)-alt-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PSiF-DBT) nanocomposite solar cells, which improves the fill factor compared to pure aluminum electrodes. A comprehensive structural investigation was performed by means of transmission electron microscopy and time-of-flight secondary ion mass spectrometry revealing the presence of silver nanoparticles in an aluminum oxide matrix between the absorber layer and the aluminum cathode. In combination with complementary optical investigations, the origin of the improvement is ascribed to a facilitated charge extraction.
Original language | English |
---|---|
Journal | The Journal of Physical Chemistry Part C |
Volume | 116 |
Issue number | 36 |
Pages (from-to) | 19191-19196 |
ISSN | 1932-7447 |
DOIs | |
Publication status | Published - 2012 |