Abstract
The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S. cerevisiae reactants to a plurality of S. cerevisiae reactions, a constraint set for the plurality of S. cerevisiae reactions, and commands for determining a distribution of flux through the reactions that is predictive of a S. cerevisiae physiological function. A model of the invention can further include a gene database containing information characterizing the associated gene or genes. The invention further provides methods for making an in silica S. cerevisiae model and methods for determining a S. cerevisiae physiological function using a model of the invention. The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S. cerevisiae reactants to a plurality of S. cerevisiae reactions, a constraint set for the plurality of S. cerevisiae reactions, and commands for determining a distribution of flux through the reactions that is predictive of a S. cerevisiae physiological function. A model of the invention can further include a gene database containing information characterizing the associated gene or genes. The invention further provides methods for making an in silica S. cerevisiae model and methods for determining a S. cerevisiae physiological function using a model of the invention.
Original language | English |
---|---|
IPC | G01N33/48; G06F17/30; G06F19/00 |
Patent number | WO03036296 |
Filing date | 13/06/2012 |
Country/Territory | International Bureau of the World Intellectual Property Organization (WIPO) |
Priority date | 26/10/2001 |
Priority number | US20010344447P |
Publication status | Published - 2012 |