Complex Polynomial Vector Fields

Kealey Dias

    Research output: Contribution to conferencePaperResearch

    Abstract

    The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions or meromorphic (allowing poles as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields.
    Original languageEnglish
    Publication date2007
    Publication statusPublished - 2007
    EventConformal Structures and Dynamics: The current state-of-art and perspectives - University of Warwick, Warwick, United Kingdom
    Duration: 11 Jun 200715 Jun 2007
    https://web.archive.org/web/20080328143433/http://www.warwick.ac.uk/~mascs/cody/cody-training.html (List of CODY conferences)

    Conference

    ConferenceConformal Structures and Dynamics
    LocationUniversity of Warwick
    Country/TerritoryUnited Kingdom
    CityWarwick
    Period11/06/200715/06/2007
    OtherOpening conferences of EU Research Training Network CODY
    Internet address

    Keywords

    • Holomorphic

    Fingerprint

    Dive into the research topics of 'Complex Polynomial Vector Fields'. Together they form a unique fingerprint.

    Cite this