Complete structures of Bordetella bronchiseptica and Bordetella parapertussis lipopolysaccharides - DTU Orbit (27/10/2019)

Complete structures of Bordetella bronchiseptica and Bordetella parapertussis lipopolysaccharides

The structures of the lipopolysaccharide (LPS) core and O antigen of Bordetella bronchiseptica and Bordetella parapertussis are known, but how these two regions are linked to each other had not been determined. We have studied LPS from several strains of these microorganisms to determine the complete carbohydrate structure of the LPS. LPS was analyzed using different chemical degradations, NMR spectroscopy, and mass spectrometry. This identified a novel pentasaccharide fragment that links the O chain to the core in all the LPS studied. In addition, although the O chain of these bacteria was reported as a homopolymer of 1,4-linked 2,3-diacetamido-2,3-dideoxy-alpha-galacturonic acid, we discovered that the polymer contains several amidated uronic acids, the number of which varies between strains. These new data describe the complete structure of the LPS carbohydrate backbone for both Bordetella species and help to explain the complex genetics of LPS biosynthesis in these bacteria.

General information

Publication status: Published
Organisations: University of Guelph, Carlsberg Research Center, US National Institute of Health, National Research Council of Canada
Contributors: Preston, A., Petersen, B., Duus, J. Ø., Kubler-Kielb, J., Ben-Menachem, G., Li, J., Vinogradov, E.
Number of pages: 10
Pages: 18135-18144
Publication date: 2006
Peer-reviewed: Yes

Publication information

Journal: Journal of Biological Chemistry
Volume: 281
Issue number: 26
ISSN (Print): 0021-9258
Ratings:
Web of Science (2006): Indexed yes
Original language: English
Keywords: Bordetella bronchiseptica, Bordetella parapertussis, Carbohydrate Sequence, Lipopolysaccharides, Molecular Sequence Data, Nuclear Magnetic Resonance, Biomolecular, Species Specificity, Spectrometry, Mass, Electrospray Ionization, Biochemistry, Biopolymers, Biosynthesis, Carbohydrates, Microorganisms, Molecular structure, Polysaccharides, carbohydrate, galacturonic acid, lipopolysaccharide, pentasaccharide, phenylacetic acid derivative, polymer, amidation, article, bacterial strain, controlled study, electrospray mass spectrometry, microorganism, nonhuman, nuclear magnetic resonance spectroscopy, priority journal, protein analysis, protein degradation, protein determination, protein structure, Bacteria (microorganisms), Bordetella, Bordetella species, Carbohydrate backbone, Homopolymer, Uronic acids, T, X, BIOCHEMISTRY, RESPIRATORY-TRACT INFECTION, BIOSYNTHESIS LOCUS, O-ANTIGEN, PERTUSSIS, POLYSACCHARIDES, HOST, WLB, Gram-Negative Aerobic Rods and Cocci Eubacteria Bacteria Microorganisms (Bacteria, Eubacteria, Microorganisms) - Alcaligenaceae [06502] Bordetella bronchiseptica species strain-10580, strain-BAA-588 Bordetella parapertussis species strain-15311, strain-BAA-587, strain-15989, 2,3-diacetamido-2,3-dideoxy-alpha-galacturonic acid, lipopolysaccharide LPS degradation, biosynthesis, O antigen, uronic acids, 10060, Biochemistry studies - General, 10066, Biochemistry studies - Lipids, 10068, Biochemistry studies - Carbohydrates, 31000, Physiology and biochemistry of bacteria, mass spectrometry laboratory techniques, spectrum analysis techniques, NMR spectroscopy laboratory techniques, spectrum analysis techniques, Biochemistry and Molecular Biophysics

DOIs:

10.1074/jbc.M513904200

Source: FindIt
Source ID: 8229095

Research output: Contribution to journal › Journal article – Annual report year: 2006 › Research › peer-review