Comparison of Ultrasonic Welding and Thermal Bonding for the Integration of Thin Film Metal Electrodes in Injection Molded Polymeric Lab-on-Chip Systems for Electrochemistry - DTU Orbit (02/11/2019)

We compare ultrasonic welding (UW) and thermal bonding (TB) for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM) microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones obtained using TB. Parameters such as metal thickness of electrodes, depth of electrode embedding, delivered power, and height of energy directors (for UW), as well as pressure and temperature (for TB), were systematically studied to evaluate the two bonding methods and requirements for optimal electrochemical performance. The presented technology is intended for easy and effective integration of polymeric Lab-on-Chip systems to encourage their use in research, commercialization and education.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Bioanalytics, Polymer Micro & Nano Engineering
Contributors: Matteucci, M., Heiskanen, A., Zor, K., Emnéus, J., Taboryski, R. J.
Number of pages: 12
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Sensors
Volume: 16
Issue number: 11
Article number: 1795
ISSN (Print): 1424-8220
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.78 SJR 0.623 SNIP 1.614
Web of Science (2016): Impact factor 2.677
Web of Science (2016): Indexed yes
Original language: English
Keywords: Electrochemistry, Injection molding, Metal electrodes, Microfluidics, Ultrasonic welding
Electronic versions:
sensors_16_01795_v2.pdf
DOI:
10.3390/s16111795
Source: FindIt
Source ID: 2347958432
Research output: Contribution to journal > Journal article – Annual report year: 2016 > Research > peer-review