The Actuator Line Method exists for more than a decade and has become a well established choice for simulating wind rotors in computational fluid dynamics. Numerous implementations exist and are used in the wind energy research community. These codes were verified by experimental data such as the MEXICO experiment. Often the verification against other codes were made on a very broad scale. Therefore this study attempts first a validation by comparing two different implementations, namely an adapted version of SOWFA/OpenFOAM and EllipSys3D and also a verification by comparing against experimental results from the MEXICO and NEW MEXICO experiments.

General information
Publication status: Published
Organisations: Department of Wind Energy, Aerodynamic design, ETS
Number of pages: 9
Publication date: 2017

Host publication information
Title of host publication: Wake Conference 2017
Volume: 854
Publisher: IOP Publishing
Article number: 012033
Keywords: Applied fluid mechanics, General fluid dynamics theory, simulation and other computational methods, Civil and mechanical engineering computing, Fluid mechanics and aerodynamics (mechanical engineering), Mechanical components, Mechanical engineering applications of IT, computational fluid dynamics, rotors (mechanical), wind, wind power, OpenFOAM, EllipSys3D actuator line methods, wind rotors, wind energy research community, SOWFA
Electronic versions:
DOIs: 10.1088/1742-6596/854/1/012033
Source: FindIt
Source ID: 2371467291
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2017 › Research › peer-review