Comparison of numerical modelling techniques for impact investigation on a wind turbine blade

Amrit Shankar Verma*, Nils Petter Vedvik, Philipp Ulrich Haselbach, Zhen Gao, Zhiyu Jiang

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Wind turbine blades are exposed to numerous impact risks throughout their lifetimes. The impact risks range from bird collisions during operation to impacts with surrounding structures at the time of transportation and installation. Impact loads on the fibre composite blades can induce several complex, simultaneously interacting and visually undetectable damage modes and have a high potential to reduce the local and global blade stiffness. An assessment of such impact-induced damages is therefore necessary and usually involves high computational costs using numerical procedures, especially when analysing large composite components. To minimise this computational expense, different numerical impact modelling techniques are utilised, primarily shell-element-based approaches and multiscale-modelling-based global-local approaches. In this article, a comparison between (1) pure shell, (2) shell-to-solid coupling, and (3) submodelling finite element modelling techniques using Abaqus/Explicit is presented for a case where an impactor hits the leading edge of a blade. A high-fidelity local solid finite element model is developed for the leading edge of a DTU 10 MW blade at the region of impact and its stiffness is compared with baseline. A user material subroutine VUMAT for the intralaminar damage mode based on the Hashin failure criterion is formulated and then validated via an experiment from the literature. Finally, based on different numerical modelling techniques, impact investigations are performed, and the impact responses, damage to the blade and computational analysis durations are compared. It is found that the submodelling-based global-local approach is the most efficient analysis technique for this case, capturing failure modes including delamination, core crushing and local surface indentation in the blade. The findings of this study can be used to develop accurate and computationally efficient tools for modelling impact-induced damage to a blade.

Original languageEnglish
JournalComposite Structures
Volume209
Pages (from-to)856-878
ISSN0263-8223
DOIs
Publication statusPublished - 2019

Keywords

  • Finite element method
  • Global-local method
  • Impact
  • Progressive failure analysis
  • Wind turbine blade

Cite this

Verma, Amrit Shankar ; Vedvik, Nils Petter ; Haselbach, Philipp Ulrich ; Gao, Zhen ; Jiang, Zhiyu. / Comparison of numerical modelling techniques for impact investigation on a wind turbine blade. In: Composite Structures. 2019 ; Vol. 209. pp. 856-878.
@article{fa8eac4b09dd475c80b7b75d74764e94,
title = "Comparison of numerical modelling techniques for impact investigation on a wind turbine blade",
abstract = "Wind turbine blades are exposed to numerous impact risks throughout their lifetimes. The impact risks range from bird collisions during operation to impacts with surrounding structures at the time of transportation and installation. Impact loads on the fibre composite blades can induce several complex, simultaneously interacting and visually undetectable damage modes and have a high potential to reduce the local and global blade stiffness. An assessment of such impact-induced damages is therefore necessary and usually involves high computational costs using numerical procedures, especially when analysing large composite components. To minimise this computational expense, different numerical impact modelling techniques are utilised, primarily shell-element-based approaches and multiscale-modelling-based global-local approaches. In this article, a comparison between (1) pure shell, (2) shell-to-solid coupling, and (3) submodelling finite element modelling techniques using Abaqus/Explicit is presented for a case where an impactor hits the leading edge of a blade. A high-fidelity local solid finite element model is developed for the leading edge of a DTU 10 MW blade at the region of impact and its stiffness is compared with baseline. A user material subroutine VUMAT for the intralaminar damage mode based on the Hashin failure criterion is formulated and then validated via an experiment from the literature. Finally, based on different numerical modelling techniques, impact investigations are performed, and the impact responses, damage to the blade and computational analysis durations are compared. It is found that the submodelling-based global-local approach is the most efficient analysis technique for this case, capturing failure modes including delamination, core crushing and local surface indentation in the blade. The findings of this study can be used to develop accurate and computationally efficient tools for modelling impact-induced damage to a blade.",
keywords = "Finite element method, Global-local method, Impact, Progressive failure analysis, Wind turbine blade",
author = "Verma, {Amrit Shankar} and Vedvik, {Nils Petter} and Haselbach, {Philipp Ulrich} and Zhen Gao and Zhiyu Jiang",
year = "2019",
doi = "10.1016/j.compstruct.2018.11.001",
language = "English",
volume = "209",
pages = "856--878",
journal = "Composite Structures",
issn = "0263-8223",
publisher = "Elsevier",

}

Comparison of numerical modelling techniques for impact investigation on a wind turbine blade. / Verma, Amrit Shankar; Vedvik, Nils Petter; Haselbach, Philipp Ulrich; Gao, Zhen; Jiang, Zhiyu.

In: Composite Structures, Vol. 209, 2019, p. 856-878.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Comparison of numerical modelling techniques for impact investigation on a wind turbine blade

AU - Verma, Amrit Shankar

AU - Vedvik, Nils Petter

AU - Haselbach, Philipp Ulrich

AU - Gao, Zhen

AU - Jiang, Zhiyu

PY - 2019

Y1 - 2019

N2 - Wind turbine blades are exposed to numerous impact risks throughout their lifetimes. The impact risks range from bird collisions during operation to impacts with surrounding structures at the time of transportation and installation. Impact loads on the fibre composite blades can induce several complex, simultaneously interacting and visually undetectable damage modes and have a high potential to reduce the local and global blade stiffness. An assessment of such impact-induced damages is therefore necessary and usually involves high computational costs using numerical procedures, especially when analysing large composite components. To minimise this computational expense, different numerical impact modelling techniques are utilised, primarily shell-element-based approaches and multiscale-modelling-based global-local approaches. In this article, a comparison between (1) pure shell, (2) shell-to-solid coupling, and (3) submodelling finite element modelling techniques using Abaqus/Explicit is presented for a case where an impactor hits the leading edge of a blade. A high-fidelity local solid finite element model is developed for the leading edge of a DTU 10 MW blade at the region of impact and its stiffness is compared with baseline. A user material subroutine VUMAT for the intralaminar damage mode based on the Hashin failure criterion is formulated and then validated via an experiment from the literature. Finally, based on different numerical modelling techniques, impact investigations are performed, and the impact responses, damage to the blade and computational analysis durations are compared. It is found that the submodelling-based global-local approach is the most efficient analysis technique for this case, capturing failure modes including delamination, core crushing and local surface indentation in the blade. The findings of this study can be used to develop accurate and computationally efficient tools for modelling impact-induced damage to a blade.

AB - Wind turbine blades are exposed to numerous impact risks throughout their lifetimes. The impact risks range from bird collisions during operation to impacts with surrounding structures at the time of transportation and installation. Impact loads on the fibre composite blades can induce several complex, simultaneously interacting and visually undetectable damage modes and have a high potential to reduce the local and global blade stiffness. An assessment of such impact-induced damages is therefore necessary and usually involves high computational costs using numerical procedures, especially when analysing large composite components. To minimise this computational expense, different numerical impact modelling techniques are utilised, primarily shell-element-based approaches and multiscale-modelling-based global-local approaches. In this article, a comparison between (1) pure shell, (2) shell-to-solid coupling, and (3) submodelling finite element modelling techniques using Abaqus/Explicit is presented for a case where an impactor hits the leading edge of a blade. A high-fidelity local solid finite element model is developed for the leading edge of a DTU 10 MW blade at the region of impact and its stiffness is compared with baseline. A user material subroutine VUMAT for the intralaminar damage mode based on the Hashin failure criterion is formulated and then validated via an experiment from the literature. Finally, based on different numerical modelling techniques, impact investigations are performed, and the impact responses, damage to the blade and computational analysis durations are compared. It is found that the submodelling-based global-local approach is the most efficient analysis technique for this case, capturing failure modes including delamination, core crushing and local surface indentation in the blade. The findings of this study can be used to develop accurate and computationally efficient tools for modelling impact-induced damage to a blade.

KW - Finite element method

KW - Global-local method

KW - Impact

KW - Progressive failure analysis

KW - Wind turbine blade

U2 - 10.1016/j.compstruct.2018.11.001

DO - 10.1016/j.compstruct.2018.11.001

M3 - Journal article

AN - SCOPUS:85056569554

VL - 209

SP - 856

EP - 878

JO - Composite Structures

JF - Composite Structures

SN - 0263-8223

ER -