Comparison of mechanical friction evaluations from occupational footwear certified as slip resistant

Lasse Jakobsen*, Timo Bagehorn, Ion Marius Sivebaek, Filip Gertz Lysdal

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Slipping is a major cause of occupational accidents and numerous footwear factors and features, as well as the testing conditions, affects a shoe's ability to resist slipping. The aim of this study was to compare slip resistance certification data from five certified shoes with measurements performed on a mechanical test setup in accordance with the ISO 20347:2012 standard, as well as determining their performance in a biofidelic setup that resembles the biomechanics of slipping. Certification data attributed Shoe #3 with the highest slip resistance, and our mechanical assessment of the same footwear models showed that Shoe #2 had the higher slip resistance and was superior under more biofidelic testing parameters. Based on our mechanical evaluations, specific engineering considerations such as an increase in both the heel beveling and the midsole thickness can advantageously enhance slip resistance. Further investigation in a clinical setting will provide insights on how these engineered footwear adjustments could enhance friction and ultimately enhance occupational safety.
Original languageEnglish
JournalProceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Volume238
Issue number7
Pages (from-to)848–859
ISSN1350-6501
DOIs
Publication statusPublished - 2024

Keywords

  • Friction
  • Footwear
  • Lubricated friction
  • Slips trips and falls
  • Traction

Fingerprint

Dive into the research topics of 'Comparison of mechanical friction evaluations from occupational footwear certified as slip resistant'. Together they form a unique fingerprint.

Cite this