Comparison of K-doped and pure cold-rolled tungsten sheets: As-rolled condition and recrystallization behaviour after isochronal annealing at different temperatures

Philipp Lied, Carsten Bonnekoh, Wolfgang Pantleon, Markus Stricker, Andreas Hoffmann, Jens Reiser

    Research output: Contribution to journalJournal articleResearchpeer-review

    148 Downloads (Pure)

    Abstract

    Severely deformed cold-rolled tungsten is a promising structural material for future fusion reactor applications due to high melting temperature and excellent mechanical properties. However, the fine-grained microstructure after deformation is not stable at temperatures above 800 °C, leading to brittle material behaviour. In this study, we utilize potassium-doping to inhibit recrystallization of tungsten sheets, a mechanism well known from incandescent lamp wires. We produced K-doped tungsten sheets by warm-rolling and subsequent cold-rolling with five different logarithmic strains up to 4.6, and equivalently rolled pure tungsten sheets. Both sets of materials are compared using EBSD and microhardness testing. In both materials, the hardness increases and the grain size along normal direction decreases with strain; the densities of low and high angle boundaries increase in particular during cold-rolling. The K-doped W sheet reaches the highest hardness with 772 ± 8 HV0.1, compared to the pure W sheet with 711 ± 14 HV0.1. All boundaries taken into account, a Hall-Petch relation describes the hardness evolution nicely, except a deviation of the K-doped tungsten sheet rolled to highest strain with its much higher hardness. The similar structural and mechanical properties of both materials in the as-rolled condition allow further studies of recrystallization behaviour of the new K-doped material with a benchmark against the equivalent pure tungsten sheets. Isochronal annealing for 1 h was performed at different temperatures between 700 °C and 2200 °C. A sharp decrease in hardness to intermediate values is observed at around 900 °C for both materials, presumably reflecting extended recovery. A second decrease is observed at 1400 °C for pure tungsten, approaching the hardness of a single crystal and indicating recrystallization and severe growth of grains. For K-doped tungsten, however, the occurrence of the second decrease is shifted to higher temperatures from 1400 °C to 1800 °C with increasing strain and an intermediate hardness is maintained up to 1800 °C. We refer this dependence of the recrystallization resistance on strain in the K-doped material to the dispersion of K-bubbles, resulting in increased Zener pinning forces retarding boundary motion.
    Original languageEnglish
    Article number105047
    JournalInternational Journal of Refractory Metals and Hard Materials
    Volume85
    Number of pages19
    ISSN0263-4368
    DOIs
    Publication statusPublished - 2019

    Keywords

    • Crystallographic texture
    • Dislocation interaction
    • Grain size distribution
    • Hall-Petch relation
    • Potassium-doping
    • Recrystallization inhibition

    Fingerprint

    Dive into the research topics of 'Comparison of K-doped and pure cold-rolled tungsten sheets: As-rolled condition and recrystallization behaviour after isochronal annealing at different temperatures'. Together they form a unique fingerprint.

    Cite this