Comparison of experimental and calculated shielding factors for modular buildings in a radioactive fallout scenario

Experimentally and theoretically determined shielding factors for a common light construction dwelling type were obtained and compared. Sources of the gamma-emitting radionuclides 60Co and 137Cs were positioned around and on top of a modular building to represent homogeneous fallout. The modular building used was a standard prefabricated structure obtained from a commercial manufacturer. Four reference positions for the gamma radiation detectors were used inside the building. Theoretical dose rate calculations were performed using the Monte Carlo code MCNP6, and additional calculations were performed that compared the shielding factor for 137Cs and 134Cs. This work demonstrated the applicability of using MCNP6 for theoretical calculations of radioactive fallout scenarios. Furthermore, the work showed that the shielding effect for modular buildings is almost the same for 134Cs as for 137Cs.

General information
Publication status: Published
Organisations: Center for Nuclear Technologies, The Hevesy Laboratory, Radioecology and Tracer Studies, Lund University
Corresponding author: Hinrichsen, Y.
Contributors: Hinrichsen, Y., Finck, R., Östlund, K., Rääf, C., Andersson, K. G.
Pages: 146-155
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Environmental Radioactivity
Volume: 189
ISSN (Print): 0265-931X
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 2.52 SJR 0.856 SNIP 1.333
Web of Science (2018): Impact factor 2.179
Web of Science (2018): Indexed yes
Original language: English
Keywords: Shielding factor, Monte Carlo simulations, Experimental validation
DOIs: 10.1016/j.jenvrad.2018.04.005
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review