Comparison of 2-compartment, 3-compartment and stack designs for electrodialytic removal of heavy metals from harbour sediments

Kristine B. Pedersen, Lisbeth M. Ottosen, Pernille Erland Jensen, Tore Lejon

Research output: Contribution to journalJournal articleResearchpeer-review

276 Downloads (Pure)


Comparisons of cell and stack designs for the electrodialytic removal of heavy metals from two harbour sediments, were made. Multivariate modelling showed that sediment properties and experimental set-ups had the highest influence on the heavy metal removal indicating that they should be modelled and analysed separately. Clean-up levels of Cu, Pb and Zn were significantly higher for the cell designs, implying that longer time and relatively more electric charge and energy would be necessary to achieve similar clean-up levels in the stack design experiments.In the studied experimental domain, the optimal current density for the 2- and 3-compartment cells was 0.12mA/cm2 (center value) removing the highest quantity of Cu, Pb and Zn per Wh. The highest percentages removed were 82% Cu, 81% Pb and 92% Zn were however achieved at higher current density. For the stack experiments conducted at same electric charge per unit sediment, energy consumption was a magnitude higher and the highest clean-up levels were 21% Cu, 42% Pb and 73% Zn.
Original languageEnglish
JournalElectrochimica Acta
Pages (from-to)48-57
Number of pages10
Publication statusPublished - 2015
Event13th International Symposium on Electrokinetic Remediation - Málaga, Spain
Duration: 7 Sep 201410 Sep 2014
Conference number: 13


Conference13th International Symposium on Electrokinetic Remediation
Internet address


  • Electrodialysis
  • Electrokinetics
  • Harbour sediments
  • Heavy metals
  • Remediation

Cite this