Abstract
The growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from the same subject versus graphs from different subjects. The inferred structure is most consistent between graphs from the same subject, however, the model is able to predict links in graphs from different subjects on par with results within a subject. The framework proposed can be used as a statistical modeling tool for the identification of structure and quantification of similarity in graphs of brain connectivity in general.
Original language | English |
---|---|
Title of host publication | 2013 International Workshop on Pattern Recognition in Neuroimaging (PRNI) |
Publisher | IEEE |
Publication date | 2013 |
Pages | 50-53 |
ISBN (Print) | 978-0-7695-5061-9 |
DOIs | |
Publication status | Published - 2013 |
Event | 3rd International Workshop on Pattern Recognition in NeuroImaging (PRNI 2013) - Philadelphia, PA, United States Duration: 22 Jun 2013 → 24 Jun 2013 http://www.prni.org/ |
Conference
Conference | 3rd International Workshop on Pattern Recognition in NeuroImaging (PRNI 2013) |
---|---|
Country/Territory | United States |
City | Philadelphia, PA |
Period | 22/06/2013 → 24/06/2013 |
Internet address |